ee.ImageCollection.getRegion

Menampilkan array nilai untuk setiap tuple [piksel, band, gambar] dalam ImageCollection. Output berisi baris id, lon, lat, time, dan semua band untuk setiap gambar yang berpotongan dengan setiap piksel di wilayah tertentu. Mencoba mengekstrak lebih dari 1048576 nilai akan menghasilkan error.

PenggunaanHasil
ImageCollection.getRegion(geometry, scale, crs, crsTransform)Daftar
ArgumenJenisDetail
ini: collectionImageCollectionKoleksi gambar untuk mengekstrak data.
geometryGeometriRegion tempat data akan diekstrak.
scaleFloat, default: nullSkala nominal dalam meter proyeksi yang akan digunakan.
crsProyeksi, opsionalProyeksi yang akan dikerjakan. Jika tidak ditentukan, default-nya adalah EPSG:4326. Jika ditentukan selain skala, proyeksi akan diubah skalanya ke skala yang ditentukan.
crsTransformDaftar, default: nullArray nilai transformasi CRS. Ini adalah urutan baris-utama dari transformasi affine 3x2. Opsi ini tidak dapat digunakan bersama dengan opsi skala, dan akan menggantikan transformasi yang sudah ditetapkan pada proyeksi tertentu.

Contoh

Code Editor (JavaScript)

// A Landsat 8 TOA image collection (3 months at a specific point, RGB bands).
var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
  .filterBounds(ee.Geometry.Point(-90.70, 34.71))
  .filterDate('2020-07-01', '2020-10-01')
  .select('B[2-4]');
print('Collection', col);

// Define a region to get pixel values for. This is a small rectangle region
// that intersects 2 image pixels at 30-meter scale.
var roi = ee.Geometry.BBox(-90.496353, 34.851971, -90.495749, 34.852197);

// Display the region of interest overlaid on an image representative. Note
// the ROI intersection with 2 pixels.
var visParams = {
  bands: ['B4', 'B3', 'B2'],
  min: 0.128,
  max: 0.163
};
Map.setCenter(-90.49605, 34.85211, 19);
Map.addLayer(col.first(), visParams, 'Image representative');
Map.addLayer(roi, {color: 'white'}, 'ROI');

// Fetch pixel-level information from all images in the collection for the
// pixels intersecting the ROI.
var pixelInfoBbox = col.getRegion({
  geometry: roi,
  scale: 30
});

// The result is a table (a list of lists) where the first row is column
// labels and subsequent rows are image pixels. Columns contain values for
// the image ID ('system:index'), pixel longitude and latitude, image
// observation time ('system:time_start'), and bands. In this example, note
// that there are 5 images and the region intersects 2 pixels, so n rows
// equals 11 (5 * 2 + 1). All collection images must have the same number of
// bands with the same names.
print('Extracted pixel info', pixelInfoBbox);

// The function accepts all geometry types (e.g., points, lines, polygons).
// Here, a multi-point geometry with two points is used.
var points = ee.Geometry.MultiPoint([[-90.49, 34.85], [-90.48, 34.84]]);
var pixelInfoPoints = col.getRegion({
  geometry: points,
  scale: 30
});
print('Point geometry example', pixelInfoPoints);

Penyiapan Python

Lihat halaman Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan geemap untuk pengembangan interaktif.

import ee
import geemap.core as geemap

Colab (Python)

# A Landsat 8 TOA image collection (3 months at a specific point, RGB bands).
col = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
    .filterBounds(ee.Geometry.Point(-90.70, 34.71))
    .filterDate('2020-07-01', '2020-10-01')
    .select('B[2-4]')
)
display('Collection', col)

# Define a region to get pixel values for. This is a small rectangle region
# that intersects 2 image pixels at 30-meter scale.
roi = ee.Geometry.BBox(-90.496353, 34.851971, -90.495749, 34.852197)

# Display the region of interest overlaid on an image representative. Note
# the ROI intersection with 2 pixels.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.128, 'max': 0.163}
m = geemap.Map()
m.set_center(-90.49605, 34.85211, 19)
m.add_layer(col.first(), vis_params, 'Image representative')
m.add_layer(roi, {'color': 'white'}, 'ROI')
display(m)

# Fetch pixel-level information from all images in the collection for the
# pixels intersecting the ROI.
pixel_info_bbox = col.getRegion(geometry=roi, scale=30)

# The result is a table (a list of lists) where the first row is column
# labels and subsequent rows are image pixels. Columns contain values for
# the image ID ('system:index'), pixel longitude and latitude, image
# observation time ('system:time_start'), and bands. In this example, note
# that there are 5 images and the region intersects 2 pixels, so n rows
# equals 11 (5 * 2 + 1). All collection images must have the same number of
# bands with the same names.
display('Extracted pixel info', pixel_info_bbox)

# The function accepts all geometry types (e.g., points, lines, polygons).
# Here, a multi-point geometry with two points is used.
points = ee.Geometry.MultiPoint([[-90.49, 34.85], [-90.48, 34.84]])
pixel_info_points = col.getRegion(geometry=points, scale=30)
display('Point geometry example', pixel_info_points)