Annuncio: tutti i progetti non commerciali registrati per l'utilizzo di Earth Engine prima del
15 aprile 2025 devono
verificare l'idoneità non commerciale per mantenere l'accesso a Earth Engine.
ee.ImageCollection.mode
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Riduce una raccolta di immagini calcolando il valore più comune in ogni pixel dello stack di tutte le bande corrispondenti. Le band vengono abbinate in base al nome.
Utilizzo | Resi |
---|
ImageCollection.mode() | Immagine |
Argomento | Tipo | Dettagli |
---|
questo: collection | ImageCollection | La raccolta di immagini da ridurre. |
Esempi
Editor di codice (JavaScript)
// Sentinel-2 image collection for July 2021 intersecting a point of interest.
// Reflectance, cloud probability, and scene classification bands are selected.
var col = ee.ImageCollection('COPERNICUS/S2_SR')
.filterDate('2021-07-01', '2021-08-01')
.filterBounds(ee.Geometry.Point(-122.373, 37.448))
.select('B.*|MSK_CLDPRB|SCL');
// Visualization parameters for reflectance RGB.
var visRefl = {
bands: ['B11', 'B8', 'B3'],
min: 0,
max: 4000
};
Map.setCenter(-122.373, 37.448, 9);
Map.addLayer(col, visRefl, 'Collection reference', false);
// Reduce the collection to a single image using a variety of methods.
var mean = col.mean();
Map.addLayer(mean, visRefl, 'Mean (B11, B8, B3)');
var median = col.median();
Map.addLayer(median, visRefl, 'Median (B11, B8, B3)');
var min = col.min();
Map.addLayer(min, visRefl, 'Min (B11, B8, B3)');
var max = col.max();
Map.addLayer(max, visRefl, 'Max (B11, B8, B3)');
var sum = col.sum();
Map.addLayer(sum,
{bands: ['MSK_CLDPRB'], min: 0, max: 500}, 'Sum (MSK_CLDPRB)');
var product = col.product();
Map.addLayer(product,
{bands: ['MSK_CLDPRB'], min: 0, max: 1e10}, 'Product (MSK_CLDPRB)');
// ee.ImageCollection.mode returns the most common value. If multiple mode
// values occur, the minimum mode value is returned.
var mode = col.mode();
Map.addLayer(mode, {bands: ['SCL'], min: 1, max: 11}, 'Mode (pixel class)');
// ee.ImageCollection.count returns the frequency of valid observations. Here,
// image pixels are masked based on cloud probability to add valid observation
// variability to the collection. Note that pixels with no valid observations
// are masked out of the returned image.
var notCloudCol = col.map(function(img) {
return img.updateMask(img.select('MSK_CLDPRB').lte(10));
});
var count = notCloudCol.count();
Map.addLayer(count, {min: 1, max: 5}, 'Count (not cloud observations)');
// ee.ImageCollection.mosaic composites images according to their position in
// the collection (priority is last to first) and pixel mask status, where
// invalid (mask value 0) pixels are filled by preceding valid (mask value >0)
// pixels.
var mosaic = notCloudCol.mosaic();
Map.addLayer(mosaic, visRefl, 'Mosaic (B11, B8, B3)');
Configurazione di Python
Consulta la pagina
Ambiente Python per informazioni sull'API Python e sull'utilizzo di
geemap
per lo sviluppo interattivo.
import ee
import geemap.core as geemap
Colab (Python)
# Sentinel-2 image collection for July 2021 intersecting a point of interest.
# Reflectance, cloud probability, and scene classification bands are selected.
col = (
ee.ImageCollection('COPERNICUS/S2_SR')
.filterDate('2021-07-01', '2021-08-01')
.filterBounds(ee.Geometry.Point(-122.373, 37.448))
.select('B.*|MSK_CLDPRB|SCL')
)
# Visualization parameters for reflectance RGB.
vis_refl = {'bands': ['B11', 'B8', 'B3'], 'min': 0, 'max': 4000}
m = geemap.Map()
m.set_center(-122.373, 37.448, 9)
m.add_layer(col, vis_refl, 'Collection reference', False)
# Reduce the collection to a single image using a variety of methods.
mean = col.mean()
m.add_layer(mean, vis_refl, 'Mean (B11, B8, B3)')
median = col.median()
m.add_layer(median, vis_refl, 'Median (B11, B8, B3)')
min = col.min()
m.add_layer(min, vis_refl, 'Min (B11, B8, B3)')
max = col.max()
m.add_layer(max, vis_refl, 'Max (B11, B8, B3)')
sum = col.sum()
m.add_layer(
sum, {'bands': ['MSK_CLDPRB'], 'min': 0, 'max': 500}, 'Sum (MSK_CLDPRB)'
)
product = col.product()
m.add_layer(
product,
{'bands': ['MSK_CLDPRB'], 'min': 0, 'max': 1e10},
'Product (MSK_CLDPRB)',
)
# ee.ImageCollection.mode returns the most common value. If multiple mode
# values occur, the minimum mode value is returned.
mode = col.mode()
m.add_layer(
mode, {'bands': ['SCL'], 'min': 1, 'max': 11}, 'Mode (pixel class)'
)
# ee.ImageCollection.count returns the frequency of valid observations. Here,
# image pixels are masked based on cloud probability to add valid observation
# variability to the collection. Note that pixels with no valid observations
# are masked out of the returned image.
not_cloud_col = col.map(
lambda img: img.updateMask(img.select('MSK_CLDPRB').lte(10))
)
count = not_cloud_col.count()
m.add_layer(count, {'min': 1, 'max': 5}, 'Count (not cloud observations)')
# ee.ImageCollection.mosaic composites images according to their position in
# the collection (priority is last to first) and pixel mask status, where
# invalid (mask value 0) pixels are filled by preceding valid (mask value >0)
# pixels.
mosaic = not_cloud_col.mosaic()
m.add_layer(mosaic, vis_refl, 'Mosaic (B11, B8, B3)')
m
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[[["\u003cp\u003e\u003ccode\u003eImageCollection.mode()\u003c/code\u003e reduces an image collection to a single image by calculating the most frequent pixel value for each band across the collection.\u003c/p\u003e\n"],["\u003cp\u003eBands are matched by name during the reduction process.\u003c/p\u003e\n"],["\u003cp\u003eIf multiple pixel values have the same highest frequency (multiple modes), the minimum mode value is selected for that pixel.\u003c/p\u003e\n"],["\u003cp\u003eThe resulting image represents the most common values observed in the collection for each band.\u003c/p\u003e\n"]]],["The content details the `mode()` function within an `ImageCollection`, which finds the most frequent pixel value across matching bands in a stack of images, returning a single `Image`. It demonstrates reducing an image collection using functions such as: `mean()`, `median()`, `min()`, `max()`, `sum()`, and `product()`. It also shows how to calculate a pixel frequency using `count()` and to mosaic together images with `mosaic()`. `mode` returns the lowest value if multiple values have the same frequency.\n"],null,["# ee.ImageCollection.mode\n\nReduces an image collection by calculating the most common value at each pixel across the stack of all matching bands. Bands are matched by name.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------|---------|\n| ImageCollection.mode`()` | Image |\n\n| Argument | Type | Details |\n|--------------------|-----------------|---------------------------------|\n| this: `collection` | ImageCollection | The image collection to reduce. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Sentinel-2 image collection for July 2021 intersecting a point of interest.\n// Reflectance, cloud probability, and scene classification bands are selected.\nvar col = ee.ImageCollection('COPERNICUS/S2_SR')\n .filterDate('2021-07-01', '2021-08-01')\n .filterBounds(ee.Geometry.Point(-122.373, 37.448))\n .select('B.*|MSK_CLDPRB|SCL');\n\n// Visualization parameters for reflectance RGB.\nvar visRefl = {\n bands: ['B11', 'B8', 'B3'],\n min: 0,\n max: 4000\n};\nMap.setCenter(-122.373, 37.448, 9);\nMap.addLayer(col, visRefl, 'Collection reference', false);\n\n// Reduce the collection to a single image using a variety of methods.\nvar mean = col.mean();\nMap.addLayer(mean, visRefl, 'Mean (B11, B8, B3)');\n\nvar median = col.median();\nMap.addLayer(median, visRefl, 'Median (B11, B8, B3)');\n\nvar min = col.min();\nMap.addLayer(min, visRefl, 'Min (B11, B8, B3)');\n\nvar max = col.max();\nMap.addLayer(max, visRefl, 'Max (B11, B8, B3)');\n\nvar sum = col.sum();\nMap.addLayer(sum,\n {bands: ['MSK_CLDPRB'], min: 0, max: 500}, 'Sum (MSK_CLDPRB)');\n\nvar product = col.product();\nMap.addLayer(product,\n {bands: ['MSK_CLDPRB'], min: 0, max: 1e10}, 'Product (MSK_CLDPRB)');\n\n// ee.ImageCollection.mode returns the most common value. If multiple mode\n// values occur, the minimum mode value is returned.\nvar mode = col.mode();\nMap.addLayer(mode, {bands: ['SCL'], min: 1, max: 11}, 'Mode (pixel class)');\n\n// ee.ImageCollection.count returns the frequency of valid observations. Here,\n// image pixels are masked based on cloud probability to add valid observation\n// variability to the collection. Note that pixels with no valid observations\n// are masked out of the returned image.\nvar notCloudCol = col.map(function(img) {\n return img.updateMask(img.select('MSK_CLDPRB').lte(10));\n});\nvar count = notCloudCol.count();\nMap.addLayer(count, {min: 1, max: 5}, 'Count (not cloud observations)');\n\n// ee.ImageCollection.mosaic composites images according to their position in\n// the collection (priority is last to first) and pixel mask status, where\n// invalid (mask value 0) pixels are filled by preceding valid (mask value \u003e0)\n// pixels.\nvar mosaic = notCloudCol.mosaic();\nMap.addLayer(mosaic, visRefl, 'Mosaic (B11, B8, B3)');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Sentinel-2 image collection for July 2021 intersecting a point of interest.\n# Reflectance, cloud probability, and scene classification bands are selected.\ncol = (\n ee.ImageCollection('COPERNICUS/S2_SR')\n .filterDate('2021-07-01', '2021-08-01')\n .filterBounds(ee.Geometry.Point(-122.373, 37.448))\n .select('B.*|MSK_CLDPRB|SCL')\n)\n\n# Visualization parameters for reflectance RGB.\nvis_refl = {'bands': ['B11', 'B8', 'B3'], 'min': 0, 'max': 4000}\nm = geemap.Map()\nm.set_center(-122.373, 37.448, 9)\nm.add_layer(col, vis_refl, 'Collection reference', False)\n\n# Reduce the collection to a single image using a variety of methods.\nmean = col.mean()\nm.add_layer(mean, vis_refl, 'Mean (B11, B8, B3)')\n\nmedian = col.median()\nm.add_layer(median, vis_refl, 'Median (B11, B8, B3)')\n\nmin = col.min()\nm.add_layer(min, vis_refl, 'Min (B11, B8, B3)')\n\nmax = col.max()\nm.add_layer(max, vis_refl, 'Max (B11, B8, B3)')\n\nsum = col.sum()\nm.add_layer(\n sum, {'bands': ['MSK_CLDPRB'], 'min': 0, 'max': 500}, 'Sum (MSK_CLDPRB)'\n)\n\nproduct = col.product()\nm.add_layer(\n product,\n {'bands': ['MSK_CLDPRB'], 'min': 0, 'max': 1e10},\n 'Product (MSK_CLDPRB)',\n)\n\n# ee.ImageCollection.mode returns the most common value. If multiple mode\n# values occur, the minimum mode value is returned.\nmode = col.mode()\nm.add_layer(\n mode, {'bands': ['SCL'], 'min': 1, 'max': 11}, 'Mode (pixel class)'\n)\n\n# ee.ImageCollection.count returns the frequency of valid observations. Here,\n# image pixels are masked based on cloud probability to add valid observation\n# variability to the collection. Note that pixels with no valid observations\n# are masked out of the returned image.\nnot_cloud_col = col.map(\n lambda img: img.updateMask(img.select('MSK_CLDPRB').lte(10))\n)\ncount = not_cloud_col.count()\nm.add_layer(count, {'min': 1, 'max': 5}, 'Count (not cloud observations)')\n\n# ee.ImageCollection.mosaic composites images according to their position in\n# the collection (priority is last to first) and pixel mask status, where\n# invalid (mask value 0) pixels are filled by preceding valid (mask value \u003e0)\n# pixels.\nmosaic = not_cloud_col.mosaic()\nm.add_layer(mosaic, vis_refl, 'Mosaic (B11, B8, B3)')\nm\n```"]]