ee.ImageCollection.reduceToImage

Erstellt ein Bild aus einer Feature-Sammlung, indem ein Reducer auf die ausgewählten Attribute aller Features angewendet wird, die sich mit den einzelnen Pixeln überschneiden.

NutzungAusgabe
ImageCollection.reduceToImage(properties, reducer)Bild
ArgumentTypDetails
So gehts: collectionFeatureCollectionFeature-Sammlung, die mit jedem Ausgabepixel geschnitten werden soll.
propertiesListeEigenschaften, die aus jeder Funktion ausgewählt und an den Reducer übergeben werden sollen.
reducerReducerEin Reducer, mit dem die Eigenschaften der einzelnen sich überschneidenden Features in einem Endergebnis kombiniert werden, das im Pixel gespeichert wird.

Beispiele

Code-Editor (JavaScript)

var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
  .filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
  .filterDate('2021', '2022');

// Image visualization settings.
var visParams = {
  bands: ['B4', 'B3', 'B2'],
  min: 0.01,
  max: 0.25
};
Map.addLayer(col.mean(), visParams, 'RGB mean');

// Reduce the geometry (footprint) of images in the collection to an image.
// Image property values are applied to the pixels intersecting each
// image's geometry and then a per-pixel reduction is performed according
// to the selected reducer. Here, the image cloud cover property is assigned
// to the pixels intersecting image geometry and then reduced to a single
// image representing the per-pixel mean image cloud cover.
var meanCloudCover = col.reduceToImage({
  properties: ['CLOUD_COVER'],
  reducer: ee.Reducer.mean()
});

Map.setCenter(-119.87, 44.76, 6);
Map.addLayer(meanCloudCover, {min: 0, max: 50}, 'Cloud cover mean');

Python einrichten

Informationen zur Python API und zur Verwendung von geemap für die interaktive Entwicklung finden Sie auf der Seite Python-Umgebung.

import ee
import geemap.core as geemap

Colab (Python)

col = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
    .filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
    .filterDate('2021', '2022')
)

# Image visualization settings.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.01, 'max': 0.25}
m = geemap.Map()
m.add_layer(col.mean(), vis_params, 'RGB mean')

# Reduce the geometry (footprint) of images in the collection to an image.
# Image property values are applied to the pixels intersecting each
# image's geometry and then a per-pixel reduction is performed according
# to the selected reducer. Here, the image cloud cover property is assigned
# to the pixels intersecting image geometry and then reduced to a single
# image representing the per-pixel mean image cloud cover.
mean_cloud_cover = col.reduceToImage(
    properties=['CLOUD_COVER'], reducer=ee.Reducer.mean()
)

m.set_center(-119.87, 44.76, 6)
m.add_layer(mean_cloud_cover, {'min': 0, 'max': 50}, 'Cloud cover mean')
m