ee.ImageCollection.reduceToImage

Crea una imagen a partir de una colección de entidades aplicando un reductor a las propiedades seleccionadas de todas las entidades que se intersecan con cada píxel.

UsoMuestra
ImageCollection.reduceToImage(properties, reducer)Imagen
ArgumentoTipoDetalles
esta: collectionFeatureCollectionColección de entidades para intersecar con cada píxel de salida.
propertiesListaSon las propiedades que se seleccionan de cada elemento y se pasan al reductor.
reducerReductorEs un reductor que combina las propiedades de cada elemento que se cruza en un resultado final para almacenar en el píxel.

Ejemplos

Editor de código (JavaScript)

var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
  .filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
  .filterDate('2021', '2022');

// Image visualization settings.
var visParams = {
  bands: ['B4', 'B3', 'B2'],
  min: 0.01,
  max: 0.25
};
Map.addLayer(col.mean(), visParams, 'RGB mean');

// Reduce the geometry (footprint) of images in the collection to an image.
// Image property values are applied to the pixels intersecting each
// image's geometry and then a per-pixel reduction is performed according
// to the selected reducer. Here, the image cloud cover property is assigned
// to the pixels intersecting image geometry and then reduced to a single
// image representing the per-pixel mean image cloud cover.
var meanCloudCover = col.reduceToImage({
  properties: ['CLOUD_COVER'],
  reducer: ee.Reducer.mean()
});

Map.setCenter(-119.87, 44.76, 6);
Map.addLayer(meanCloudCover, {min: 0, max: 50}, 'Cloud cover mean');

Configuración de Python

Consulta la página Entorno de Python para obtener información sobre la API de Python y el uso de geemap para el desarrollo interactivo.

import ee
import geemap.core as geemap

Colab (Python)

col = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
    .filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
    .filterDate('2021', '2022')
)

# Image visualization settings.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.01, 'max': 0.25}
m = geemap.Map()
m.add_layer(col.mean(), vis_params, 'RGB mean')

# Reduce the geometry (footprint) of images in the collection to an image.
# Image property values are applied to the pixels intersecting each
# image's geometry and then a per-pixel reduction is performed according
# to the selected reducer. Here, the image cloud cover property is assigned
# to the pixels intersecting image geometry and then reduced to a single
# image representing the per-pixel mean image cloud cover.
mean_cloud_cover = col.reduceToImage(
    properties=['CLOUD_COVER'], reducer=ee.Reducer.mean()
)

m.set_center(-119.87, 44.76, 6)
m.add_layer(mean_cloud_cover, {'min': 0, 'max': 50}, 'Cloud cover mean')
m