ee.ImageCollection.reduceToImage

با اعمال یک کاهنده بر روی خصوصیات انتخاب شده همه ویژگی هایی که هر پیکسل را قطع می کنند، یک تصویر از یک مجموعه ویژگی ایجاد می کند.

استفاده برمی گرداند
ImageCollection. reduceToImage (properties, reducer) تصویر
استدلال تایپ کنید جزئیات
این: collection مجموعه ویژگی ها مجموعه ویژگی برای تقاطع با هر پیکسل خروجی.
properties فهرست کنید ویژگی هایی برای انتخاب از هر ویژگی و انتقال به کاهنده.
reducer کاهنده یک Reducer برای ترکیب خصوصیات هر ویژگی متقاطع در نتیجه نهایی برای ذخیره در پیکسل.

نمونه ها

ویرایشگر کد (جاوا اسکریپت)

var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
  .filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
  .filterDate('2021', '2022');

// Image visualization settings.
var visParams = {
  bands: ['B4', 'B3', 'B2'],
  min: 0.01,
  max: 0.25
};
Map.addLayer(col.mean(), visParams, 'RGB mean');

// Reduce the geometry (footprint) of images in the collection to an image.
// Image property values are applied to the pixels intersecting each
// image's geometry and then a per-pixel reduction is performed according
// to the selected reducer. Here, the image cloud cover property is assigned
// to the pixels intersecting image geometry and then reduced to a single
// image representing the per-pixel mean image cloud cover.
var meanCloudCover = col.reduceToImage({
  properties: ['CLOUD_COVER'],
  reducer: ee.Reducer.mean()
});

Map.setCenter(-119.87, 44.76, 6);
Map.addLayer(meanCloudCover, {min: 0, max: 50}, 'Cloud cover mean');

راه اندازی پایتون

برای اطلاعات در مورد API پایتون و استفاده از geemap برای توسعه تعاملی به صفحه محیط پایتون مراجعه کنید.

import ee
import geemap.core as geemap

کولب (پایتون)

col = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
    .filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
    .filterDate('2021', '2022')
)

# Image visualization settings.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.01, 'max': 0.25}
m = geemap.Map()
m.add_layer(col.mean(), vis_params, 'RGB mean')

# Reduce the geometry (footprint) of images in the collection to an image.
# Image property values are applied to the pixels intersecting each
# image's geometry and then a per-pixel reduction is performed according
# to the selected reducer. Here, the image cloud cover property is assigned
# to the pixels intersecting image geometry and then reduced to a single
# image representing the per-pixel mean image cloud cover.
mean_cloud_cover = col.reduceToImage(
    properties=['CLOUD_COVER'], reducer=ee.Reducer.mean()
)

m.set_center(-119.87, 44.76, 6)
m.add_layer(mean_cloud_cover, {'min': 0, 'max': 50}, 'Cloud cover mean')
m
،با اعمال یک کاهنده بر روی خصوصیات انتخاب شده همه ویژگی هایی که هر پیکسل را قطع می کنند، یک تصویر از یک مجموعه ویژگی ایجاد می کند.

استفاده برمی گرداند
ImageCollection. reduceToImage (properties, reducer) تصویر
استدلال تایپ کنید جزئیات
این: collection مجموعه ویژگی ها مجموعه ویژگی برای تقاطع با هر پیکسل خروجی.
properties فهرست کنید ویژگی هایی برای انتخاب از هر ویژگی و انتقال به کاهنده.
reducer کاهنده یک Reducer برای ترکیب خصوصیات هر ویژگی متقاطع در نتیجه نهایی برای ذخیره در پیکسل.

نمونه ها

ویرایشگر کد (جاوا اسکریپت)

var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
  .filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
  .filterDate('2021', '2022');

// Image visualization settings.
var visParams = {
  bands: ['B4', 'B3', 'B2'],
  min: 0.01,
  max: 0.25
};
Map.addLayer(col.mean(), visParams, 'RGB mean');

// Reduce the geometry (footprint) of images in the collection to an image.
// Image property values are applied to the pixels intersecting each
// image's geometry and then a per-pixel reduction is performed according
// to the selected reducer. Here, the image cloud cover property is assigned
// to the pixels intersecting image geometry and then reduced to a single
// image representing the per-pixel mean image cloud cover.
var meanCloudCover = col.reduceToImage({
  properties: ['CLOUD_COVER'],
  reducer: ee.Reducer.mean()
});

Map.setCenter(-119.87, 44.76, 6);
Map.addLayer(meanCloudCover, {min: 0, max: 50}, 'Cloud cover mean');

راه اندازی پایتون

برای اطلاعات در مورد API پایتون و استفاده از geemap برای توسعه تعاملی به صفحه محیط پایتون مراجعه کنید.

import ee
import geemap.core as geemap

کولب (پایتون)

col = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
    .filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
    .filterDate('2021', '2022')
)

# Image visualization settings.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.01, 'max': 0.25}
m = geemap.Map()
m.add_layer(col.mean(), vis_params, 'RGB mean')

# Reduce the geometry (footprint) of images in the collection to an image.
# Image property values are applied to the pixels intersecting each
# image's geometry and then a per-pixel reduction is performed according
# to the selected reducer. Here, the image cloud cover property is assigned
# to the pixels intersecting image geometry and then reduced to a single
# image representing the per-pixel mean image cloud cover.
mean_cloud_cover = col.reduceToImage(
    properties=['CLOUD_COVER'], reducer=ee.Reducer.mean()
)

m.set_center(-119.87, 44.76, 6)
m.add_layer(mean_cloud_cover, {'min': 0, 'max': 50}, 'Cloud cover mean')
m