ee.ImageCollection.reduceToImage
با مجموعهها، منظم بمانید
ذخیره و طبقهبندی محتوا براساس اولویتهای شما.
با اعمال یک کاهنده بر روی خصوصیات انتخاب شده همه ویژگی هایی که هر پیکسل را قطع می کنند، یک تصویر از یک مجموعه ویژگی ایجاد می کند.
استفاده | برمی گرداند | ImageCollection. reduceToImage (properties, reducer) | تصویر |
استدلال | تایپ کنید | جزئیات | این: collection | مجموعه ویژگی ها | مجموعه ویژگی برای تقاطع با هر پیکسل خروجی. |
properties | فهرست کنید | ویژگی هایی برای انتخاب از هر ویژگی و انتقال به کاهنده. |
reducer | کاهنده | یک Reducer برای ترکیب خصوصیات هر ویژگی متقاطع در نتیجه نهایی برای ذخیره در پیکسل. |
نمونه ها
ویرایشگر کد (جاوا اسکریپت)
var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
.filterDate('2021', '2022');
// Image visualization settings.
var visParams = {
bands: ['B4', 'B3', 'B2'],
min: 0.01,
max: 0.25
};
Map.addLayer(col.mean(), visParams, 'RGB mean');
// Reduce the geometry (footprint) of images in the collection to an image.
// Image property values are applied to the pixels intersecting each
// image's geometry and then a per-pixel reduction is performed according
// to the selected reducer. Here, the image cloud cover property is assigned
// to the pixels intersecting image geometry and then reduced to a single
// image representing the per-pixel mean image cloud cover.
var meanCloudCover = col.reduceToImage({
properties: ['CLOUD_COVER'],
reducer: ee.Reducer.mean()
});
Map.setCenter(-119.87, 44.76, 6);
Map.addLayer(meanCloudCover, {min: 0, max: 50}, 'Cloud cover mean');
راه اندازی پایتون
برای اطلاعات در مورد API پایتون و استفاده از geemap
برای توسعه تعاملی به صفحه محیط پایتون مراجعه کنید.
import ee
import geemap.core as geemap
کولب (پایتون)
col = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
.filterDate('2021', '2022')
)
# Image visualization settings.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.01, 'max': 0.25}
m = geemap.Map()
m.add_layer(col.mean(), vis_params, 'RGB mean')
# Reduce the geometry (footprint) of images in the collection to an image.
# Image property values are applied to the pixels intersecting each
# image's geometry and then a per-pixel reduction is performed according
# to the selected reducer. Here, the image cloud cover property is assigned
# to the pixels intersecting image geometry and then reduced to a single
# image representing the per-pixel mean image cloud cover.
mean_cloud_cover = col.reduceToImage(
properties=['CLOUD_COVER'], reducer=ee.Reducer.mean()
)
m.set_center(-119.87, 44.76, 6)
m.add_layer(mean_cloud_cover, {'min': 0, 'max': 50}, 'Cloud cover mean')
m
،با اعمال یک کاهنده بر روی خصوصیات انتخاب شده همه ویژگی هایی که هر پیکسل را قطع می کنند، یک تصویر از یک مجموعه ویژگی ایجاد می کند.
استفاده | برمی گرداند | ImageCollection. reduceToImage (properties, reducer) | تصویر |
استدلال | تایپ کنید | جزئیات | این: collection | مجموعه ویژگی ها | مجموعه ویژگی برای تقاطع با هر پیکسل خروجی. |
properties | فهرست کنید | ویژگی هایی برای انتخاب از هر ویژگی و انتقال به کاهنده. |
reducer | کاهنده | یک Reducer برای ترکیب خصوصیات هر ویژگی متقاطع در نتیجه نهایی برای ذخیره در پیکسل. |
نمونه ها
ویرایشگر کد (جاوا اسکریپت)
var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
.filterDate('2021', '2022');
// Image visualization settings.
var visParams = {
bands: ['B4', 'B3', 'B2'],
min: 0.01,
max: 0.25
};
Map.addLayer(col.mean(), visParams, 'RGB mean');
// Reduce the geometry (footprint) of images in the collection to an image.
// Image property values are applied to the pixels intersecting each
// image's geometry and then a per-pixel reduction is performed according
// to the selected reducer. Here, the image cloud cover property is assigned
// to the pixels intersecting image geometry and then reduced to a single
// image representing the per-pixel mean image cloud cover.
var meanCloudCover = col.reduceToImage({
properties: ['CLOUD_COVER'],
reducer: ee.Reducer.mean()
});
Map.setCenter(-119.87, 44.76, 6);
Map.addLayer(meanCloudCover, {min: 0, max: 50}, 'Cloud cover mean');
راه اندازی پایتون
برای اطلاعات در مورد API پایتون و استفاده از geemap
برای توسعه تعاملی به صفحه محیط پایتون مراجعه کنید.
import ee
import geemap.core as geemap
کولب (پایتون)
col = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterBounds(ee.Geometry.BBox(-124.0, 43.2, -116.5, 46.3))
.filterDate('2021', '2022')
)
# Image visualization settings.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.01, 'max': 0.25}
m = geemap.Map()
m.add_layer(col.mean(), vis_params, 'RGB mean')
# Reduce the geometry (footprint) of images in the collection to an image.
# Image property values are applied to the pixels intersecting each
# image's geometry and then a per-pixel reduction is performed according
# to the selected reducer. Here, the image cloud cover property is assigned
# to the pixels intersecting image geometry and then reduced to a single
# image representing the per-pixel mean image cloud cover.
mean_cloud_cover = col.reduceToImage(
properties=['CLOUD_COVER'], reducer=ee.Reducer.mean()
)
m.set_center(-119.87, 44.76, 6)
m.add_layer(mean_cloud_cover, {'min': 0, 'max': 50}, 'Cloud cover mean')
m
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی.
[null,null,["تاریخ آخرین بهروزرسانی 2025-07-24 بهوقت ساعت هماهنگ جهانی."],[],[],null,[]]