ee.ImageCollection.sort

Trie une collection selon la propriété spécifiée.

Renvoie la collection triée.

UtilisationRenvoie
ImageCollection.sort(property, ascending)Collection
ArgumentTypeDétails
ceci : collectionCollectionInstance de la collection.
propertyChaînePropriété à utiliser pour le tri.
ascendingBooléen, facultatifIndique si le tri doit être effectué par ordre croissant ou décroissant. La valeur par défaut est "true" (croissant).

Exemples

Éditeur de code (JavaScript)

// A Landsat 8 TOA image collection (2 months of images at a specific point).
var col = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
  .filterBounds(ee.Geometry.Point(-90.70, 34.71))
  .filterDate('2020-07-01', '2020-09-01');
print('Collection', col);

// Sort the collection in ASCENDING order of image cloud cover.
var colCldSortAsc = col.sort('CLOUD_COVER');
print('Cloud cover ascending', colCldSortAsc);

// Display the image with the least cloud cover.
var visParams = {
  bands: ['B4', 'B3', 'B2'],
  min: 0.01,
  max: 0.25
};
Map.setCenter(-90.70, 34.71, 9);
Map.addLayer(colCldSortAsc.first(), visParams, 'Least cloudy');

// Sort the collection in DESCENDING order of image cloud cover.
var colCldSortDesc = col.sort('CLOUD_COVER', false);
print('Cloud cover descending', colCldSortDesc);

// Display the image with the most cloud cover.
Map.addLayer(colCldSortDesc.first(), visParams, 'Most cloudy');

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et sur l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

# A Landsat 8 TOA image collection (2 months of images at a specific point).
col = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
    .filterBounds(ee.Geometry.Point(-90.70, 34.71))
    .filterDate('2020-07-01', '2020-09-01')
)
display('Collection', col)

# Sort the collection in ASCENDING order of image cloud cover.
col_cld_sort_asc = col.sort('CLOUD_COVER')
display('Cloud cover ascending', col_cld_sort_asc)

# Display the image with the least cloud cover.
vis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0.01, 'max': 0.25}
m = geemap.Map()
m.set_center(-90.70, 34.71, 9)
m.add_layer(col_cld_sort_asc.first(), vis_params, 'Least cloudy')

# Sort the collection in DESCENDING order of image cloud cover.
col_cld_sort_desc = col.sort('CLOUD_COVER', False)
display('Cloud cover descending', col_cld_sort_desc)

# Display the image with the most cloud cover.
m.add_layer(col_cld_sort_desc.first(), vis_params, 'Most cloudy')
m