ee.Kernel.add
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Addiert zwei Kerne (punktweise), nachdem ihre Zentren ausgerichtet wurden.
Nutzung | Ausgabe |
---|
Kernel.add(kernel2, normalize) | Kernel |
Argument | Typ | Details |
---|
So gehts: kernel1 | Kernel | Der erste Kernel. |
kernel2 | Kernel | Der zweite Kernel. |
normalize | Boolescher Wert, Standard: „false“ | Normalisieren Sie den Kernel. |
Beispiele
Code-Editor (JavaScript)
// Two kernels, they do not need to have the same dimensions.
var kernelA = ee.Kernel.chebyshev({radius: 3});
var kernelB = ee.Kernel.square({radius: 1, normalize: false, magnitude: 100});
print(kernelA, kernelB);
/**
* Two kernel weights matrices
*
* [3, 3, 3, 3, 3, 3, 3]
* [3, 2, 2, 2, 2, 2, 3]
* [3, 2, 1, 1, 1, 2, 3] [100, 100, 100]
* A [3, 2, 1, 0, 1, 2, 3] B [100, 100, 100]
* [3, 2, 1, 1, 1, 2, 3] [100, 100, 100]
* [3, 2, 2, 2, 2, 2, 3]
* [3, 3, 3, 3, 3, 3, 3]
*/
print('Pointwise addition of two kernels', kernelA.add(kernelB));
/**
* [3, 3, 3, 3, 3, 3, 3]
* [3, 2, 2, 2, 2, 2, 3]
* [3, 2, 101, 101, 101, 2, 3]
* [3, 2, 101, 100, 101, 2, 3]
* [3, 2, 101, 101, 101, 2, 3]
* [3, 2, 2, 2, 2, 2, 3]
* [3, 3, 3, 3, 3, 3, 3]
*/
Python einrichten
Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung finden Sie auf der Seite
Python-Umgebung.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# Two kernels, they do not need to have the same dimensions.
kernel_a = ee.Kernel.chebyshev(**{'radius': ee.Number(3)})
kernel_b = ee.Kernel.square(**{
'radius': 1,
'normalize': False,
'magnitude': 100
})
pprint(kernel_a.getInfo())
pprint(kernel_b.getInfo())
# Two kernel weights matrices
# [3, 3, 3, 3, 3, 3, 3]
# [3, 2, 2, 2, 2, 2, 3]
# [3, 2, 1, 1, 1, 2, 3] [100, 100, 100]
# A [3, 2, 1, 0, 1, 2, 3] B [100, 100, 100]
# [3, 2, 1, 1, 1, 2, 3] [100, 100, 100]
# [3, 2, 2, 2, 2, 2, 3]
# [3, 3, 3, 3, 3, 3, 3]
print('Pointwise addition of two kernels:')
pprint(kernel_a.add(kernel_b).getInfo())
# [3, 3, 3, 3, 3, 3, 3]
# [3, 2, 2, 2, 2, 2, 3]
# [3, 2, 101, 101, 101, 2, 3]
# [3, 2, 101, 100, 101, 2, 3]
# [3, 2, 101, 101, 101, 2, 3]
# [3, 2, 2, 2, 2, 2, 3]
# [3, 3, 3, 3, 3, 3, 3]
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-27 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-27 (UTC)."],[[["\u003cp\u003e\u003ccode\u003eKernel.add\u003c/code\u003e combines two kernels by adding their weights pointwise after aligning their centers.\u003c/p\u003e\n"],["\u003cp\u003eThe resulting kernel has the same dimensions as the larger of the two input kernels.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003enormalize\u003c/code\u003e parameter can be used to normalize the resulting kernel.\u003c/p\u003e\n"],["\u003cp\u003eKernels do not need to have the same dimensions to be added.\u003c/p\u003e\n"]]],[],null,["# ee.Kernel.add\n\nAdds two kernels (pointwise) after aligning their centers.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------|---------|\n| Kernel.add`(kernel2, `*normalize*`)` | Kernel |\n\n| Argument | Type | Details |\n|-----------------|-------------------------|-----------------------|\n| this: `kernel1` | Kernel | The first kernel. |\n| `kernel2` | Kernel | The second kernel. |\n| `normalize` | Boolean, default: false | Normalize the kernel. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Two kernels, they do not need to have the same dimensions.\nvar kernelA = ee.Kernel.chebyshev({radius: 3});\nvar kernelB = ee.Kernel.square({radius: 1, normalize: false, magnitude: 100});\nprint(kernelA, kernelB);\n\n/**\n * Two kernel weights matrices\n *\n * [3, 3, 3, 3, 3, 3, 3]\n * [3, 2, 2, 2, 2, 2, 3]\n * [3, 2, 1, 1, 1, 2, 3] [100, 100, 100]\n * A [3, 2, 1, 0, 1, 2, 3] B [100, 100, 100]\n * [3, 2, 1, 1, 1, 2, 3] [100, 100, 100]\n * [3, 2, 2, 2, 2, 2, 3]\n * [3, 3, 3, 3, 3, 3, 3]\n */\n\nprint('Pointwise addition of two kernels', kernelA.add(kernelB));\n\n/**\n * [3, 3, 3, 3, 3, 3, 3]\n * [3, 2, 2, 2, 2, 2, 3]\n * [3, 2, 101, 101, 101, 2, 3]\n * [3, 2, 101, 100, 101, 2, 3]\n * [3, 2, 101, 101, 101, 2, 3]\n * [3, 2, 2, 2, 2, 2, 3]\n * [3, 3, 3, 3, 3, 3, 3]\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# Two kernels, they do not need to have the same dimensions.\nkernel_a = ee.Kernel.chebyshev(**{'radius': ee.Number(3)})\nkernel_b = ee.Kernel.square(**{\n 'radius': 1,\n 'normalize': False,\n 'magnitude': 100\n})\npprint(kernel_a.getInfo())\npprint(kernel_b.getInfo())\n\n# Two kernel weights matrices\n\n# [3, 3, 3, 3, 3, 3, 3]\n# [3, 2, 2, 2, 2, 2, 3]\n# [3, 2, 1, 1, 1, 2, 3] [100, 100, 100]\n# A [3, 2, 1, 0, 1, 2, 3] B [100, 100, 100]\n# [3, 2, 1, 1, 1, 2, 3] [100, 100, 100]\n# [3, 2, 2, 2, 2, 2, 3]\n# [3, 3, 3, 3, 3, 3, 3]\n\nprint('Pointwise addition of two kernels:')\npprint(kernel_a.add(kernel_b).getInfo())\n\n# [3, 3, 3, 3, 3, 3, 3]\n# [3, 2, 2, 2, 2, 2, 3]\n# [3, 2, 101, 101, 101, 2, 3]\n# [3, 2, 101, 100, 101, 2, 3]\n# [3, 2, 101, 101, 101, 2, 3]\n# [3, 2, 2, 2, 2, 2, 3]\n# [3, 3, 3, 3, 3, 3, 3]\n```"]]