ঘোষণা :
15 এপ্রিল, 2025 এর আগে আর্থ ইঞ্জিন ব্যবহার করার জন্য নিবন্ধিত সমস্ত অবাণিজ্যিক প্রকল্পগুলিকে অ্যাক্সেস বজায় রাখার জন্য
অবাণিজ্যিক যোগ্যতা যাচাই করতে হবে। আপনি যদি 26 সেপ্টেম্বর, 2025 এর মধ্যে যাচাই না করে থাকেন তবে আপনার অ্যাক্সেস হোল্ডে রাখা হতে পারে।
ee.Kernel.chebyshev
সেভ করা পৃষ্ঠা গুছিয়ে রাখতে 'সংগ্রহ' ব্যবহার করুন
আপনার পছন্দ অনুযায়ী কন্টেন্ট সেভ করুন ও সঠিক বিভাগে রাখুন।
চেবিশেভ দূরত্বের উপর ভিত্তি করে একটি দূরত্ব কার্নেল তৈরি করে (যেকোনো মাত্রা বরাবর সর্বশ্রেষ্ঠ দূরত্ব)।
| ব্যবহার | রিটার্নস | ee.Kernel.chebyshev(radius, units , normalize , magnitude ) | কার্নেল |
| যুক্তি | টাইপ | বিস্তারিত | radius | ভাসা | কার্নেলের ব্যাসার্ধ উৎপন্ন হবে। |
units | স্ট্রিং, ডিফল্ট: "পিক্সেল" | কার্নেলের জন্য পরিমাপের সিস্টেম ('পিক্সেল' বা 'মিটার')। কার্নেলটি মিটারে নির্দিষ্ট করা থাকলে, জুম-স্তর পরিবর্তন করা হলে এটির আকার পরিবর্তন হবে। |
normalize | বুলিয়ান, ডিফল্ট: মিথ্যা | কার্নেলের মানগুলিকে 1 এ যোগ করার জন্য স্বাভাবিক করুন। |
magnitude | ফ্লোট, ডিফল্ট: 1 | এই পরিমাণ দ্বারা প্রতিটি মান স্কেল. |
উদাহরণ
কোড এডিটর (জাভাস্ক্রিপ্ট)
print('A Chebyshev distance kernel', ee.Kernel.chebyshev({radius: 3}));
/**
* Output weights matrix
*
* [3, 3, 3, 3, 3, 3, 3]
* [3, 2, 2, 2, 2, 2, 3]
* [3, 2, 1, 1, 1, 2, 3]
* [3, 2, 1, 0, 1, 2, 3]
* [3, 2, 1, 1, 1, 2, 3]
* [3, 2, 2, 2, 2, 2, 3]
* [3, 3, 3, 3, 3, 3, 3]
*/ পাইথন সেটআপ
পাইথন এপিআই এবং ইন্টারেক্টিভ ডেভেলপমেন্টের জন্য geemap ব্যবহার করার জন্য পাইথন এনভায়রনমেন্ট পৃষ্ঠাটি দেখুন।
import ee
import geemap.core as geemap
Colab (পাইথন)
from pprint import pprint
print('A Chebyshev distance kernel:')
pprint(ee.Kernel.chebyshev(**{'radius': 3}).getInfo())
# Output weights matrix
# [3, 3, 3, 3, 3, 3, 3]
# [3, 2, 2, 2, 2, 2, 3]
# [3, 2, 1, 1, 1, 2, 3]
# [3, 2, 1, 0, 1, 2, 3]
# [3, 2, 1, 1, 1, 2, 3]
# [3, 2, 2, 2, 2, 2, 3]
# [3, 3, 3, 3, 3, 3, 3]
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2025-07-24 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2025-07-24 UTC-তে শেষবার আপডেট করা হয়েছে।"],[],["A Chebyshev distance kernel is generated using `ee.Kernel.chebyshev()` with a specified `radius`. The measurement system can be set to 'pixels' or 'meters' via the `units` argument. The kernel values can be normalized to sum to 1 using `normalize`, and scaled with `magnitude`. The output is a kernel representing the Chebyshev distance, where the greatest distance along any dimension defines the value, and it is presented as a matrix.\n"]]