ঘোষণা :
15 এপ্রিল, 2025 এর আগে আর্থ ইঞ্জিন ব্যবহার করার জন্য নিবন্ধিত সমস্ত অবাণিজ্যিক প্রকল্পগুলিকে অবশ্যই আর্থ ইঞ্জিন অ্যাক্সেস বজায় রাখার জন্য
অ-বাণিজ্যিক যোগ্যতা যাচাই করতে হবে।
ee.Kernel.euclidean
সেভ করা পৃষ্ঠা গুছিয়ে রাখতে 'সংগ্রহ' ব্যবহার করুন
আপনার পছন্দ অনুযায়ী কন্টেন্ট সেভ করুন ও সঠিক বিভাগে রাখুন।
ইউক্লিডীয় (সরল-রেখা) দূরত্বের উপর ভিত্তি করে একটি দূরত্ব কার্নেল তৈরি করে।
ব্যবহার | রিটার্নস | ee.Kernel.euclidean(radius, units , normalize , magnitude ) | কার্নেল |
যুক্তি | টাইপ | বিস্তারিত | radius | ভাসা | কার্নেলের ব্যাসার্ধ উৎপন্ন হবে। |
units | স্ট্রিং, ডিফল্ট: "পিক্সেল" | কার্নেলের জন্য পরিমাপের সিস্টেম ('পিক্সেল' বা 'মিটার')। কার্নেলটি মিটারে নির্দিষ্ট করা থাকলে, জুম-স্তর পরিবর্তন করা হলে এটির আকার পরিবর্তন হবে। |
normalize | বুলিয়ান, ডিফল্ট: মিথ্যা | কার্নেলের মানগুলিকে 1 এ যোগ করার জন্য স্বাভাবিক করুন। |
magnitude | ফ্লোট, ডিফল্ট: 1 | এই পরিমাণ দ্বারা প্রতিটি মান স্কেল. |
উদাহরণ
কোড এডিটর (জাভাস্ক্রিপ্ট)
print('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));
/**
* Output weights matrix (up to 1/1000 precision for brevity)
*
* [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
* [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
* [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
* [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
* [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
* [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
* [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
*/
পাইথন সেটআপ
পাইথন এপিআই এবং ইন্টারেক্টিভ ডেভেলপমেন্টের জন্য geemap
ব্যবহার করার জন্য পাইথন এনভায়রনমেন্ট পৃষ্ঠাটি দেখুন।
import ee
import geemap.core as geemap
Colab (পাইথন)
from pprint import pprint
print('A Euclidean distance kernel:')
pprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())
# Output weights matrix (up to 1/1000 precision for brevity)
# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
# [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2025-07-24 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2025-07-24 UTC-তে শেষবার আপডেট করা হয়েছে।"],[[["\u003cp\u003eGenerates a kernel to weight pixels based on their straight-line distance from the center.\u003c/p\u003e\n"],["\u003cp\u003eKernel values represent the Euclidean distance from the center pixel, optionally normalized and scaled.\u003c/p\u003e\n"],["\u003cp\u003eThe radius of the kernel and units of measurement (pixels or meters) are configurable.\u003c/p\u003e\n"],["\u003cp\u003eWhen specified in meters, the kernel automatically resizes with zoom level changes.\u003c/p\u003e\n"]]],["The `ee.Kernel.euclidean` function generates a distance kernel based on Euclidean distance, returning a Kernel object. Key parameters include `radius`, determining the kernel's size; `units` (\"pixels\" or \"meters\"), dictating the measurement system; `normalize` (default: false), setting whether values sum to 1; and `magnitude` (default: 1), scaling values. An example kernel with a radius of 3 is demonstrated, illustrating the output weight matrix.\n"],null,["# ee.Kernel.euclidean\n\nGenerates a distance kernel based on Euclidean (straight-line) distance.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------------------------|---------|\n| `ee.Kernel.euclidean(radius, `*units* `, `*normalize* `, `*magnitude*`)` | Kernel |\n\n| Argument | Type | Details |\n|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `radius` | Float | The radius of the kernel to generate. |\n| `units` | String, default: \"pixels\" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |\n| `normalize` | Boolean, default: false | Normalize the kernel values to sum to 1. |\n| `magnitude` | Float, default: 1 | Scale each value by this amount. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));\n\n/**\n * Output weights matrix (up to 1/1000 precision for brevity)\n *\n * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n * [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]\n * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\nprint('A Euclidean distance kernel:')\npprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())\n\n# Output weights matrix (up to 1/1000 precision for brevity)\n\n# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n# [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]\n# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n```"]]