ee.Kernel.euclidean
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Generiert einen Distanz-Kernel basierend auf dem euklidischen Abstand (Luftlinie).
Nutzung | Ausgabe |
---|
ee.Kernel.euclidean(radius, units, normalize, magnitude) | Kernel |
Argument | Typ | Details |
---|
radius | Gleitkommazahl | Der Radius des zu generierenden Kernels. |
units | String, Standard: „pixels“ | Das Messsystem für den Kernel („Pixel“ oder „Meter“). Wenn der Kernel in Metern angegeben ist, wird seine Größe bei einer Änderung des Zoomfaktors angepasst. |
normalize | Boolescher Wert, Standard: „false“ | Normalisieren Sie die Kernelwerte so, dass sie sich auf 1 summieren. |
magnitude | Gleitkommazahl, Standardwert: 1 | Skalieren Sie jeden Wert um diesen Betrag. |
Beispiele
Code-Editor (JavaScript)
print('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));
/**
* Output weights matrix (up to 1/1000 precision for brevity)
*
* [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
* [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
* [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
* [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
* [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
* [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
* [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
*/
Python einrichten
Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung finden Sie auf der Seite
Python-Umgebung.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
print('A Euclidean distance kernel:')
pprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())
# Output weights matrix (up to 1/1000 precision for brevity)
# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
# [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-26 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-26 (UTC)."],[[["\u003cp\u003eGenerates a kernel to weight pixels based on their straight-line distance from the center.\u003c/p\u003e\n"],["\u003cp\u003eKernel values represent the Euclidean distance from the center pixel, optionally normalized and scaled.\u003c/p\u003e\n"],["\u003cp\u003eThe radius of the kernel and units of measurement (pixels or meters) are configurable.\u003c/p\u003e\n"],["\u003cp\u003eWhen specified in meters, the kernel automatically resizes with zoom level changes.\u003c/p\u003e\n"]]],["The `ee.Kernel.euclidean` function generates a distance kernel based on Euclidean distance, returning a Kernel object. Key parameters include `radius`, determining the kernel's size; `units` (\"pixels\" or \"meters\"), dictating the measurement system; `normalize` (default: false), setting whether values sum to 1; and `magnitude` (default: 1), scaling values. An example kernel with a radius of 3 is demonstrated, illustrating the output weight matrix.\n"],null,["# ee.Kernel.euclidean\n\nGenerates a distance kernel based on Euclidean (straight-line) distance.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------------------------|---------|\n| `ee.Kernel.euclidean(radius, `*units* `, `*normalize* `, `*magnitude*`)` | Kernel |\n\n| Argument | Type | Details |\n|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `radius` | Float | The radius of the kernel to generate. |\n| `units` | String, default: \"pixels\" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |\n| `normalize` | Boolean, default: false | Normalize the kernel values to sum to 1. |\n| `magnitude` | Float, default: 1 | Scale each value by this amount. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));\n\n/**\n * Output weights matrix (up to 1/1000 precision for brevity)\n *\n * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n * [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]\n * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\nprint('A Euclidean distance kernel:')\npprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())\n\n# Output weights matrix (up to 1/1000 precision for brevity)\n\n# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n# [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]\n# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]\n# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]\n# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]\n```"]]