ee.Kernel.gaussian
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Generiert einen Gaußschen Kernel aus einer kontinuierlichen Gaußschen Stichprobe.
Nutzung | Ausgabe |
---|
ee.Kernel.gaussian(radius, sigma, units, normalize, magnitude) | Kernel |
Argument | Typ | Details |
---|
radius | Gleitkommazahl | Der Radius des zu generierenden Kernels. |
sigma | Gleitkommazahl, Standardwert: 1 | Standardabweichung der Gaußschen Funktion (dieselben Einheiten wie der Radius). |
units | String, Standard: „pixels“ | Das Messsystem für den Kernel („Pixel“ oder „Meter“). Wenn der Kernel in Metern angegeben ist, wird seine Größe bei einer Änderung des Zoomfaktors angepasst. |
normalize | Boolescher Wert, Standard: „true“ | Normalisieren Sie die Kernelwerte so, dass sie sich auf 1 summieren. |
magnitude | Gleitkommazahl, Standardwert: 1 | Skalieren Sie jeden Wert um diesen Betrag. |
Beispiele
Code-Editor (JavaScript)
print('A Gaussian kernel', ee.Kernel.gaussian({radius: 3}));
/**
* Output weights matrix (up to 1/1000 precision for brevity)
*
* [0.002, 0.013, 0.021, 0.013, 0.002]
* [0.013, 0.059, 0.098, 0.059, 0.013]
* [0.021, 0.098, 0.162, 0.098, 0.021]
* [0.013, 0.059, 0.098, 0.059, 0.013]
* [0.002, 0.013, 0.021, 0.013, 0.002]
*/
Python einrichten
Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung finden Sie auf der Seite
Python-Umgebung.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
print('A Gaussian kernel:')
pprint(ee.Kernel.gaussian(**{'radius': 3}).getInfo())
# Output weights matrix (up to 1/1000 precision for brevity)
# [0.002, 0.013, 0.021, 0.013, 0.002]
# [0.013, 0.059, 0.098, 0.059, 0.013]
# [0.021, 0.098, 0.162, 0.098, 0.021]
# [0.013, 0.059, 0.098, 0.059, 0.013]
# [0.002, 0.013, 0.021, 0.013, 0.002]
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-29 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-29 (UTC)."],[[["\u003cp\u003eThe \u003ccode\u003eee.Kernel.gaussian\u003c/code\u003e function generates a Gaussian kernel, which is essentially a matrix of weights used for image processing, derived from a continuous Gaussian distribution.\u003c/p\u003e\n"],["\u003cp\u003eUsers can customize the kernel by defining its radius, standard deviation (\u003ccode\u003esigma\u003c/code\u003e), units (pixels or meters), normalization, and magnitude (scaling factor).\u003c/p\u003e\n"],["\u003cp\u003eBy default, the kernel is normalized, meaning the sum of its values equals 1, and has a magnitude of 1, applying no scaling to the pixel values.\u003c/p\u003e\n"],["\u003cp\u003eThe generated Gaussian kernel can be applied to imagery to perform various operations such as blurring or smoothing, as demonstrated in the example code snippets.\u003c/p\u003e\n"]]],["The core function is to generate a Gaussian kernel using `ee.Kernel.gaussian()`. This function requires a `radius` and accepts optional parameters like `sigma` (standard deviation), `units` ('pixels' or 'meters'), `normalize` (kernel value normalization), and `magnitude` (scaling factor). The output is a kernel object. Example code demonstrates how to create and print a Gaussian kernel in JavaScript and Python, including the resulting weights matrix.\n"],null,["# ee.Kernel.gaussian\n\nGenerates a Gaussian kernel from a sampled continuous Gaussian.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-------------------------------------------------------------------------------------|---------|\n| `ee.Kernel.gaussian(radius, `*sigma* `, `*units* `, `*normalize* `, `*magnitude*`)` | Kernel |\n\n| Argument | Type | Details |\n|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `radius` | Float | The radius of the kernel to generate. |\n| `sigma` | Float, default: 1 | Standard deviation of the Gaussian function (same units as radius). |\n| `units` | String, default: \"pixels\" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |\n| `normalize` | Boolean, default: true | Normalize the kernel values to sum to 1. |\n| `magnitude` | Float, default: 1 | Scale each value by this amount. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint('A Gaussian kernel', ee.Kernel.gaussian({radius: 3}));\n\n/**\n * Output weights matrix (up to 1/1000 precision for brevity)\n *\n * [0.002, 0.013, 0.021, 0.013, 0.002]\n * [0.013, 0.059, 0.098, 0.059, 0.013]\n * [0.021, 0.098, 0.162, 0.098, 0.021]\n * [0.013, 0.059, 0.098, 0.059, 0.013]\n * [0.002, 0.013, 0.021, 0.013, 0.002]\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\nprint('A Gaussian kernel:')\npprint(ee.Kernel.gaussian(**{'radius': 3}).getInfo())\n\n# Output weights matrix (up to 1/1000 precision for brevity)\n\n# [0.002, 0.013, 0.021, 0.013, 0.002]\n# [0.013, 0.059, 0.098, 0.059, 0.013]\n# [0.021, 0.098, 0.162, 0.098, 0.021]\n# [0.013, 0.059, 0.098, 0.059, 0.013]\n# [0.002, 0.013, 0.021, 0.013, 0.002]\n```"]]