ee.Kernel.gaussian
با مجموعهها، منظم بمانید
ذخیره و طبقهبندی محتوا براساس اولویتهای شما.
یک هسته گاوسی را از یک گاوسی پیوسته نمونه برداری شده تولید می کند.
استفاده | برمی گرداند | ee.Kernel.gaussian(radius, sigma , units , normalize , magnitude ) | هسته |
استدلال | تایپ کنید | جزئیات | radius | شناور | شعاع هسته برای تولید. |
sigma | شناور، پیش فرض: 1 | انحراف استاندارد تابع گاوسی (همان واحدهای شعاع). |
units | رشته، پیش فرض: "pixels" | سیستم اندازه گیری هسته (پیکسل یا متر). اگر هسته بر حسب متر مشخص شده باشد، با تغییر سطح زوم، اندازه آن تغییر می کند. |
normalize | بولی، پیش فرض: درست است | مقادیر هسته را عادی کنید تا مجموع آنها به 1 برسد. |
magnitude | شناور، پیش فرض: 1 | هر مقدار را با این مقدار مقیاس کنید. |
نمونه ها
ویرایشگر کد (جاوا اسکریپت)
print('A Gaussian kernel', ee.Kernel.gaussian({radius: 3}));
/**
* Output weights matrix (up to 1/1000 precision for brevity)
*
* [0.002, 0.013, 0.021, 0.013, 0.002]
* [0.013, 0.059, 0.098, 0.059, 0.013]
* [0.021, 0.098, 0.162, 0.098, 0.021]
* [0.013, 0.059, 0.098, 0.059, 0.013]
* [0.002, 0.013, 0.021, 0.013, 0.002]
*/
راه اندازی پایتون
برای اطلاعات در مورد API پایتون و استفاده از geemap
برای توسعه تعاملی به صفحه محیط پایتون مراجعه کنید.
import ee
import geemap.core as geemap
کولب (پایتون)
from pprint import pprint
print('A Gaussian kernel:')
pprint(ee.Kernel.gaussian(**{'radius': 3}).getInfo())
# Output weights matrix (up to 1/1000 precision for brevity)
# [0.002, 0.013, 0.021, 0.013, 0.002]
# [0.013, 0.059, 0.098, 0.059, 0.013]
# [0.021, 0.098, 0.162, 0.098, 0.021]
# [0.013, 0.059, 0.098, 0.059, 0.013]
# [0.002, 0.013, 0.021, 0.013, 0.002]
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2025-07-29 بهوقت ساعت هماهنگ جهانی.
[null,null,["تاریخ آخرین بهروزرسانی 2025-07-29 بهوقت ساعت هماهنگ جهانی."],[[["\u003cp\u003eThe \u003ccode\u003eee.Kernel.gaussian\u003c/code\u003e function generates a Gaussian kernel, which is essentially a matrix of weights used for image processing, derived from a continuous Gaussian distribution.\u003c/p\u003e\n"],["\u003cp\u003eUsers can customize the kernel by defining its radius, standard deviation (\u003ccode\u003esigma\u003c/code\u003e), units (pixels or meters), normalization, and magnitude (scaling factor).\u003c/p\u003e\n"],["\u003cp\u003eBy default, the kernel is normalized, meaning the sum of its values equals 1, and has a magnitude of 1, applying no scaling to the pixel values.\u003c/p\u003e\n"],["\u003cp\u003eThe generated Gaussian kernel can be applied to imagery to perform various operations such as blurring or smoothing, as demonstrated in the example code snippets.\u003c/p\u003e\n"]]],["The core function is to generate a Gaussian kernel using `ee.Kernel.gaussian()`. This function requires a `radius` and accepts optional parameters like `sigma` (standard deviation), `units` ('pixels' or 'meters'), `normalize` (kernel value normalization), and `magnitude` (scaling factor). The output is a kernel object. Example code demonstrates how to create and print a Gaussian kernel in JavaScript and Python, including the resulting weights matrix.\n"],null,["# ee.Kernel.gaussian\n\nGenerates a Gaussian kernel from a sampled continuous Gaussian.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|-------------------------------------------------------------------------------------|---------|\n| `ee.Kernel.gaussian(radius, `*sigma* `, `*units* `, `*normalize* `, `*magnitude*`)` | Kernel |\n\n| Argument | Type | Details |\n|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `radius` | Float | The radius of the kernel to generate. |\n| `sigma` | Float, default: 1 | Standard deviation of the Gaussian function (same units as radius). |\n| `units` | String, default: \"pixels\" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |\n| `normalize` | Boolean, default: true | Normalize the kernel values to sum to 1. |\n| `magnitude` | Float, default: 1 | Scale each value by this amount. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint('A Gaussian kernel', ee.Kernel.gaussian({radius: 3}));\n\n/**\n * Output weights matrix (up to 1/1000 precision for brevity)\n *\n * [0.002, 0.013, 0.021, 0.013, 0.002]\n * [0.013, 0.059, 0.098, 0.059, 0.013]\n * [0.021, 0.098, 0.162, 0.098, 0.021]\n * [0.013, 0.059, 0.098, 0.059, 0.013]\n * [0.002, 0.013, 0.021, 0.013, 0.002]\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\nprint('A Gaussian kernel:')\npprint(ee.Kernel.gaussian(**{'radius': 3}).getInfo())\n\n# Output weights matrix (up to 1/1000 precision for brevity)\n\n# [0.002, 0.013, 0.021, 0.013, 0.002]\n# [0.013, 0.059, 0.098, 0.059, 0.013]\n# [0.021, 0.098, 0.162, 0.098, 0.021]\n# [0.013, 0.059, 0.098, 0.059, 0.013]\n# [0.002, 0.013, 0.021, 0.013, 0.002]\n```"]]