إشعار: يجب
إثبات الأهلية للاستخدام غير التجاري لجميع المشاريع غير التجارية المسجّلة لاستخدام Earth Engine قبل
15 أبريل 2025 من أجل الحفاظ على إمكانية الوصول إليها. إذا لم يتم تأكيد حسابك بحلول 26 سبتمبر 2025، قد يتم تعليق إمكانية الوصول إليه.
ee.Kernel.manhattan
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
تُنشئ هذه الدالة نواة مسافة استنادًا إلى المسافة المستقيمة (بين مربعات سكنية).
| الاستخدام | المرتجعات |
|---|
ee.Kernel.manhattan(radius, units, normalize, magnitude) | Kernel |
| الوسيطة | النوع | التفاصيل |
|---|
radius | عدد عائم | نصف قطر النواة المطلوب إنشاؤها. |
units | سلسلة، القيمة التلقائية: "بكسل" | نظام القياس الخاص بالنواة (بالبكسل أو المتر) إذا تم تحديد النواة بالمتر، سيتم تغيير حجمها عند تغيير مستوى التكبير/التصغير. |
normalize | قيمة منطقية، القيمة التلقائية: false | يجب تسوية قيم النواة ليكون مجموعها 1. |
magnitude | عدد عائم، القيمة التلقائية: 1 | اضرب كل قيمة في هذا المبلغ. |
أمثلة
محرّر الرموز البرمجية (JavaScript)
print('A Manhattan kernel', ee.Kernel.manhattan({radius: 3}));
/**
* Output weights matrix
*
* [6, 5, 4, 3, 4, 5, 6]
* [5, 4, 3, 2, 3, 4, 5]
* [4, 3, 2, 1, 2, 3, 4]
* [3, 2, 1, 0, 1, 2, 3]
* [4, 3, 2, 1, 2, 3, 4]
* [5, 4, 3, 2, 3, 4, 5]
* [6, 5, 4, 3, 4, 5, 6]
*/
إعداد Python
راجِع صفحة
بيئة Python للحصول على معلومات حول واجهة برمجة التطبيقات Python واستخدام
geemap للتطوير التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
print('A Manhattan kernel:')
pprint(ee.Kernel.manhattan(**{'radius': 3}).getInfo())
# Output weights matrix
# [6, 5, 4, 3, 4, 5, 6]
# [5, 4, 3, 2, 3, 4, 5]
# [4, 3, 2, 1, 2, 3, 4]
# [3, 2, 1, 0, 1, 2, 3]
# [4, 3, 2, 1, 2, 3, 4]
# [5, 4, 3, 2, 3, 4, 5]
# [6, 5, 4, 3, 4, 5, 6]
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)"],[],["This tool generates a rectilinear (city-block) distance kernel using `ee.Kernel.manhattan`. Key actions involve setting the `radius`, specifying `units` as pixels or meters, and optionally `normalize` the kernel to sum to 1, and `magnitude` to scale each value. The kernel's output is a matrix, where each cell's value represents its distance.\n"]]