ee.Kernel.manhattan
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Génère un noyau de distance basé sur la distance rectiligne (Manhattan).
Utilisation | Renvoie |
---|
ee.Kernel.manhattan(radius, units, normalize, magnitude) | Noyau |
Argument | Type | Détails |
---|
radius | Float | Rayon du noyau à générer. |
units | Chaîne, valeur par défaut : "pixels" | Système de mesure du noyau ("pixels" ou "mètres"). Si le noyau est spécifié en mètres, il sera redimensionné lorsque le niveau de zoom sera modifié. |
normalize | Booléen, valeur par défaut : false | Normalisez les valeurs du noyau pour qu'elles totalisent 1. |
magnitude | Float, valeur par défaut : 1 | Échelle de chaque valeur par ce montant. |
Exemples
Éditeur de code (JavaScript)
print('A Manhattan kernel', ee.Kernel.manhattan({radius: 3}));
/**
* Output weights matrix
*
* [6, 5, 4, 3, 4, 5, 6]
* [5, 4, 3, 2, 3, 4, 5]
* [4, 3, 2, 1, 2, 3, 4]
* [3, 2, 1, 0, 1, 2, 3]
* [4, 3, 2, 1, 2, 3, 4]
* [5, 4, 3, 2, 3, 4, 5]
* [6, 5, 4, 3, 4, 5, 6]
*/
Configuration de Python
Consultez la page
Environnement Python pour en savoir plus sur l'API Python et sur l'utilisation de geemap
pour le développement interactif.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
print('A Manhattan kernel:')
pprint(ee.Kernel.manhattan(**{'radius': 3}).getInfo())
# Output weights matrix
# [6, 5, 4, 3, 4, 5, 6]
# [5, 4, 3, 2, 3, 4, 5]
# [4, 3, 2, 1, 2, 3, 4]
# [3, 2, 1, 0, 1, 2, 3]
# [4, 3, 2, 1, 2, 3, 4]
# [5, 4, 3, 2, 3, 4, 5]
# [6, 5, 4, 3, 4, 5, 6]
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],["This tool generates a rectilinear (city-block) distance kernel using `ee.Kernel.manhattan`. Key actions involve setting the `radius`, specifying `units` as pixels or meters, and optionally `normalize` the kernel to sum to 1, and `magnitude` to scale each value. The kernel's output is a matrix, where each cell's value represents its distance.\n"],null,[]]