إشعار: يجب
إثبات أهلية جميع المشاريع غير التجارية المسجّلة لاستخدام Earth Engine قبل
15 أبريل 2025 من أجل الحفاظ على إمكانية الوصول إلى Earth Engine.
Export.classifier.toAsset
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
تُنشئ هذه الدالة مهمة مجمّعة لتصدير ee.Classifier كأحد مواد عرض Earth Engine.
لا تتوفّر هذه الميزة إلا مع ee.Classifier.smileRandomForest وee.Classifier.smileCart وee.Classifier.DecisionTree وee.Classifier.DecisionTreeEnsemble.
الاستخدام | المرتجعات |
---|
Export.classifier.toAsset(classifier, description, assetId, priority) | |
الوسيطة | النوع | التفاصيل |
---|
classifier | ComputedObject | المصنِّف المطلوب تصديره |
description | سلسلة، اختيارية | اسم المهمة الذي يمكن لشخص عادي قراءته الإعداد التلقائي هو "myExportClassifierTask". |
assetId | سلسلة، اختيارية | رقم تعريف مادة العرض الوجهة. |
priority | رقم، اختياري | أولوية المهمة ضمن المشروع يتم تحديد موعد مبكر للمهام ذات الأولوية الأعلى. يجب أن تكون القيمة عددًا صحيحًا بين 0 و9999. القيمة التلقائية هي 100. |
أمثلة
محرِّر الرموز البرمجية (JavaScript)
// First gather the training data for a random forest classifier.
// Let's use MCD12Q1 yearly landcover for the labels.
var landcover = ee.ImageCollection('MODIS/061/MCD12Q1')
.filterDate('2022-01-01', '2022-12-31')
.first()
.select('LC_Type1');
// A region of interest for training our classifier.
var region = ee.Geometry.BBox(17.33, 36.07, 26.13, 43.28);
// Training features will be based on a Landsat 8 composite.
var l8 = ee.ImageCollection('LANDSAT/LC08/C02/T1')
.filterBounds(region)
.filterDate('2022-01-01', '2023-01-01');
// Draw the Landsat composite, visualizing true color bands.
var landsatComposite = ee.Algorithms.Landsat.simpleComposite({
collection: l8,
asFloat: true
});
Map.addLayer(landsatComposite, {
min: 0,
max: 0.3,
bands: ['B3', 'B2', 'B1']
}, 'Landsat composite');
// Make a training dataset by sampling the stacked images.
var training = landcover.addBands(landsatComposite).sample({
region: region,
scale: 30,
// With export to Classifier we can bump this higher to say 10,000.
numPixels: 1000
});
var classifier = ee.Classifier.smileRandomForest({
// We can also increase the number of trees higher to ~100 if needed.
numberOfTrees: 3
}).train({features: training, classProperty: 'LC_Type1'});
// Create an export classifier task to run.
var assetId = 'projects/<project-name>/assets/<asset-name>'; // <> modify these
Export.classifier.toAsset({
classifier: classifier,
description: 'classifier_export',
assetId: assetId
});
// Load the classifier after the export finishes and visualize.
var savedClassifier = ee.Classifier.load(assetId)
var landcoverPalette = '05450a,086a10,54a708,78d203,009900,c6b044,dcd159,' +
'dade48,fbff13,b6ff05,27ff87,c24f44,a5a5a5,ff6d4c,69fff8,f9ffa4,1c0dff';
var landcoverVisualization = {
palette: landcoverPalette,
min: 0,
max: 16,
format: 'png'
};
Map.addLayer(
landsatComposite.classify(savedClassifier),
landcoverVisualization,
'Upsampled landcover, saved');
إعداد لغة Python
اطّلِع على صفحة
بيئة Python للحصول على معلومات عن واجهة برمجة التطبيقات Python API واستخدام IDE
geemap
لتطوير التطبيقات التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
# First gather the training data for a random forest classifier.
# Let's use MCD12Q1 yearly landcover for the labels.
landcover = (ee.ImageCollection('MODIS/061/MCD12Q1')
.filterDate('2022-01-01', '2022-12-31')
.first()
.select('LC_Type1'))
# A region of interest for training our classifier.
region = ee.Geometry.BBox(17.33, 36.07, 26.13, 43.28)
# Training features will be based on a Landsat 8 composite.
l8 = (ee.ImageCollection('LANDSAT/LC08/C02/T1')
.filterBounds(region)
.filterDate('2022-01-01', '2023-01-01'))
# Draw the Landsat composite, visualizing true color bands.
landsatComposite = ee.Algorithms.Landsat.simpleComposite(
collection=l8, asFloat=True)
Map = geemap.Map()
Map # Render the map in the notebook.
Map.addLayer(landsatComposite, {
'min': 0,
'max': 0.3,
'bands': ['B3', 'B2', 'B1']
}, 'Landsat composite')
# Make a training dataset by sampling the stacked images.
training = landcover.addBands(landsatComposite).sample(
region=region,
scale=30,
# With export to Classifier we can bump this higher to say 10,000.
numPixels=1000
)
# We can also increase the number of trees higher to ~100 if needed.
classifier = ee.Classifier.smileRandomForest(
numberOfTrees=3).train(features=training, classProperty='LC_Type1')
# Create an export classifier task to run.
asset_id = 'projects/<project-name>/assets/<asset-name>' # <> modify these
ee.batch.Export.classifier.toAsset(
classifier=classifier,
description='classifier_export',
assetId=asset_id
)
# Load the classifier after the export finishes and visualize.
savedClassifier = ee.Classifier.load(asset_id)
landcover_palette = [
'05450a', '086a10', '54a708', '78d203', '009900',
'c6b044', 'dcd159', 'dade48', 'fbff13', 'b6ff05',
'27ff87', 'c24f44', 'a5a5a5', 'ff6d4c', '69fff8',
'f9ffa4', '1c0dff']
landcoverVisualization = {
'palette': landcover_palette,
'min': 0,
'max': 16,
'format': 'png'
}
Map.addLayer(
landsatComposite.classify(savedClassifier),
landcoverVisualization,
'Upsampled landcover, saved')
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-25 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-25 (حسب التوقيت العالمي المتفَّق عليه)"],[[["\u003cp\u003eExports an Earth Engine classifier as an asset for later use.\u003c/p\u003e\n"],["\u003cp\u003eAllows customization of the export task with description, asset ID, and priority settings.\u003c/p\u003e\n"],["\u003cp\u003eProvides code examples in JavaScript and Python demonstrating the export and subsequent use of the saved classifier.\u003c/p\u003e\n"],["\u003cp\u003eUtilizes a Landsat-based composite and MODIS landcover data for training the classifier in the examples.\u003c/p\u003e\n"],["\u003cp\u003eEnables efficient saving and loading of trained classifiers within the Earth Engine platform.\u003c/p\u003e\n"]]],["This content details exporting an `ee.Classifier` as an Earth Engine asset using `Export.classifier.toAsset`. Key actions include: creating a classifier, defining a training dataset using landcover data and Landsat composites, sampling training data, and then training the classifier. The export process involves specifying the `classifier`, `description`, `assetId`, and `priority`. After export, the saved classifier can be loaded and used for classification, then visualized.\n"],null,["# Export.classifier.toAsset\n\n\u003cbr /\u003e\n\nCreates a batch task to export an ee.Classifier as an Earth Engine asset.\n\n\u003cbr /\u003e\n\nOnly supported for ee.Classifier.smileRandomForest, ee.Classifier.smileCart, ee.Classifier.DecisionTree and ee.Classifier.DecisionTreeEnsemble.\n\n| Usage | Returns |\n|---------------------------------------------------------------------------------------|---------|\n| `Export.classifier.toAsset(classifier, `*description* `, `*assetId* `, `*priority*`)` | |\n\n| Argument | Type | Details |\n|---------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|\n| `classifier` | ComputedObject | The classifier to export. |\n| `description` | String, optional | A human-readable name of the task. Defaults to \"myExportClassifierTask\". |\n| `assetId` | String, optional | The destination asset ID. |\n| `priority` | Number, optional | The priority of the task within the project. Higher priority tasks are scheduled sooner. Must be an integer between 0 and 9999. Defaults to 100. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// First gather the training data for a random forest classifier.\n// Let's use MCD12Q1 yearly landcover for the labels.\nvar landcover = ee.ImageCollection('MODIS/061/MCD12Q1')\n .filterDate('2022-01-01', '2022-12-31')\n .first()\n .select('LC_Type1');\n// A region of interest for training our classifier.\nvar region = ee.Geometry.BBox(17.33, 36.07, 26.13, 43.28);\n\n// Training features will be based on a Landsat 8 composite.\nvar l8 = ee.ImageCollection('LANDSAT/LC08/C02/T1')\n .filterBounds(region)\n .filterDate('2022-01-01', '2023-01-01');\n\n// Draw the Landsat composite, visualizing true color bands.\nvar landsatComposite = ee.Algorithms.Landsat.simpleComposite({\n collection: l8,\n asFloat: true\n});\nMap.addLayer(landsatComposite, {\n min: 0,\n max: 0.3,\n bands: ['B3', 'B2', 'B1']\n}, 'Landsat composite');\n\n// Make a training dataset by sampling the stacked images.\nvar training = landcover.addBands(landsatComposite).sample({\n region: region,\n scale: 30,\n // With export to Classifier we can bump this higher to say 10,000.\n numPixels: 1000\n});\n\nvar classifier = ee.Classifier.smileRandomForest({\n // We can also increase the number of trees higher to ~100 if needed.\n numberOfTrees: 3\n}).train({features: training, classProperty: 'LC_Type1'});\n\n// Create an export classifier task to run.\nvar assetId = 'projects/\u003cproject-name\u003e/assets/\u003casset-name\u003e'; // \u003c\u003e modify these\nExport.classifier.toAsset({\n classifier: classifier,\n description: 'classifier_export',\n assetId: assetId\n});\n\n// Load the classifier after the export finishes and visualize.\nvar savedClassifier = ee.Classifier.load(assetId)\nvar landcoverPalette = '05450a,086a10,54a708,78d203,009900,c6b044,dcd159,' +\n 'dade48,fbff13,b6ff05,27ff87,c24f44,a5a5a5,ff6d4c,69fff8,f9ffa4,1c0dff';\nvar landcoverVisualization = {\n palette: landcoverPalette,\n min: 0,\n max: 16,\n format: 'png'\n};\nMap.addLayer(\n landsatComposite.classify(savedClassifier),\n landcoverVisualization,\n 'Upsampled landcover, saved');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# First gather the training data for a random forest classifier.\n# Let's use MCD12Q1 yearly landcover for the labels.\nlandcover = (ee.ImageCollection('MODIS/061/MCD12Q1')\n .filterDate('2022-01-01', '2022-12-31')\n .first()\n .select('LC_Type1'))\n\n# A region of interest for training our classifier.\nregion = ee.Geometry.BBox(17.33, 36.07, 26.13, 43.28)\n\n# Training features will be based on a Landsat 8 composite.\nl8 = (ee.ImageCollection('LANDSAT/LC08/C02/T1')\n .filterBounds(region)\n .filterDate('2022-01-01', '2023-01-01'))\n\n# Draw the Landsat composite, visualizing true color bands.\nlandsatComposite = ee.Algorithms.Landsat.simpleComposite(\n collection=l8, asFloat=True)\n\nMap = geemap.Map()\nMap # Render the map in the notebook.\nMap.addLayer(landsatComposite, {\n 'min': 0,\n 'max': 0.3,\n 'bands': ['B3', 'B2', 'B1']\n}, 'Landsat composite')\n\n# Make a training dataset by sampling the stacked images.\ntraining = landcover.addBands(landsatComposite).sample(\n region=region,\n scale=30,\n # With export to Classifier we can bump this higher to say 10,000.\n numPixels=1000\n)\n\n# We can also increase the number of trees higher to ~100 if needed.\nclassifier = ee.Classifier.smileRandomForest(\n numberOfTrees=3).train(features=training, classProperty='LC_Type1')\n\n# Create an export classifier task to run.\nasset_id = 'projects/\u003cproject-name\u003e/assets/\u003casset-name\u003e' # \u003c\u003e modify these\nee.batch.Export.classifier.toAsset(\n classifier=classifier,\n description='classifier_export',\n assetId=asset_id\n)\n\n# Load the classifier after the export finishes and visualize.\nsavedClassifier = ee.Classifier.load(asset_id)\nlandcover_palette = [\n '05450a', '086a10', '54a708', '78d203', '009900',\n 'c6b044', 'dcd159', 'dade48', 'fbff13', 'b6ff05',\n '27ff87', 'c24f44', 'a5a5a5', 'ff6d4c', '69fff8',\n 'f9ffa4', '1c0dff']\nlandcoverVisualization = {\n 'palette': landcover_palette,\n 'min': 0,\n 'max': 16,\n 'format': 'png'\n}\nMap.addLayer(\n landsatComposite.classify(savedClassifier),\n landcoverVisualization,\n 'Upsampled landcover, saved')\n```"]]