אלגוריתמים של Sentinel-1
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
Sentinel-1 היא משימת חלל שממומנת על ידי האיחוד האירופי ומבוצעת על ידי סוכנות החלל האירופית (ESA) במסגרת תוכנית קופרניקוס. הלוויין סנטינל-1 אוסף תמונות של מכ"ם מפתח סינתטי (SAR) בתחום C-band במגוון רזולוציות ופולריזציות. מאחר שנתוני מכשיר הראדאר דורשים כמה אלגוריתמים מיוחדים כדי לקבל תמונות אורתורקטיות ותואמות, במסמך הזה מתוארת עיבוד מקדים של נתוני Sentinel-1 ב-Earth Engine.
הנתונים של Sentinel-1 נאספים במספר תצורות שונות של המכשיר, ברזולוציות שונות ובשילובים שונים של תדרים במהלך הקפות עולות ויורדות. בגלל ההטרוגניות הזו, בדרך כלל צריך לסנן את הנתונים לקבוצת משנה הומוגנית לפני שמתחילים את העיבוד. התהליך הזה מפורט בהמשך בקטע מטא-נתונים וסינון.
כדי ליצור קבוצת משנה הומוגנית של נתוני Sentinel-1, בדרך כלל צריך לסנן את האוסף באמצעות מאפייני מטא-נתונים. שדות המטא-נתונים הנפוצים שמשמשים לסינון כוללים את המאפיינים הבאים:
transmitterReceiverPolarisation
: ['VV'], ['HH'], ['VV', 'VH'] או
['HH', 'HV']
instrumentMode
: 'IW' (Interferometric Wide Swath), 'EW' (Extra Wide Swath) או 'SM' (Strip Map). לפרטים נוספים, עיינו במקור המידע הזה.
orbitProperties_pass
: 'ASCENDING' או 'DESCENDING'
resolution_meters
: 10, 25 או 40
resolution
: 'M' (בינוני) או 'H' (גבוה). לפרטים נוספים, עיינו במקור המידע הזה.
הקוד הבא מסנן את האוסף של Sentinel-1 לפי המאפיינים transmitterReceiverPolarisation
, instrumentMode
ו-orbitProperties_pass
, ולאחר מכן מחשב שילובים של כמה תצפיות שמוצגות במפה כדי להמחיש איך המאפיינים האלה משפיעים על הנתונים.
Code Editor (JavaScript)
// Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.
var sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD')
.filterDate('2020-06-01', '2020-10-01');
// Filter the Sentinel-1 collection by metadata properties.
var vvVhIw = sentinel1
// Filter to get images with VV and VH dual polarization.
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))
// Filter to get images collected in interferometric wide swath mode.
.filter(ee.Filter.eq('instrumentMode', 'IW'));
// Separate ascending and descending orbit images into distinct collections.
var vvVhIwAsc = vvVhIw.filter(
ee.Filter.eq('orbitProperties_pass', 'ASCENDING'));
var vvVhIwDesc = vvVhIw.filter(
ee.Filter.eq('orbitProperties_pass', 'DESCENDING'));
// Calculate temporal means for various observations to use for visualization.
// Mean VH ascending.
var vhIwAscMean = vvVhIwAsc.select('VH').mean();
// Mean VH descending.
var vhIwDescMean = vvVhIwDesc.select('VH').mean();
// Mean VV for combined ascending and descending image collections.
var vvIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VV').mean();
// Mean VH for combined ascending and descending image collections.
var vhIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VH').mean();
// Display the temporal means for various observations, compare them.
Map.addLayer(vvIwAscDescMean, {min: -12, max: -4}, 'vvIwAscDescMean');
Map.addLayer(vhIwAscDescMean, {min: -18, max: -10}, 'vhIwAscDescMean');
Map.addLayer(vhIwAscMean, {min: -18, max: -10}, 'vhIwAscMean');
Map.addLayer(vhIwDescMean, {min: -18, max: -10}, 'vhIwDescMean');
Map.setCenter(-73.8719, 4.512, 9); // Bogota, Colombia
הגדרת Python
בדף
סביבת Python מפורט מידע על Python API ועל השימוש ב-geemap
לפיתוח אינטראקטיבי.
import ee
import geemap.core as geemap
Colab (Python)
# Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.
sentinel_1 = ee.ImageCollection('COPERNICUS/S1_GRD').filterDate(
'2020-06-01', '2020-10-01'
)
# Filter the Sentinel-1 collection by metadata properties.
vv_vh_iw = (
sentinel_1.filter(
# Filter to get images with VV and VH dual polarization.
ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')
)
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))
.filter(
# Filter to get images collected in interferometric wide swath mode.
ee.Filter.eq('instrumentMode', 'IW')
)
)
# Separate ascending and descending orbit images into distinct collections.
vv_vh_iw_asc = vv_vh_iw.filter(
ee.Filter.eq('orbitProperties_pass', 'ASCENDING')
)
vv_vh_iw_desc = vv_vh_iw.filter(
ee.Filter.eq('orbitProperties_pass', 'DESCENDING')
)
# Calculate temporal means for various observations to use for visualization.
# Mean VH ascending.
vh_iw_asc_mean = vv_vh_iw_asc.select('VH').mean()
# Mean VH descending.
vh_iw_desc_mean = vv_vh_iw_desc.select('VH').mean()
# Mean VV for combined ascending and descending image collections.
vv_iw_asc_desc_mean = vv_vh_iw_asc.merge(vv_vh_iw_desc).select('VV').mean()
# Mean VH for combined ascending and descending image collections.
vh_iw_asc_desc_mean = vv_vh_iw_asc.merge(vv_vh_iw_desc).select('VH').mean()
# Display the temporal means for various observations, compare them.
m = geemap.Map()
m.add_layer(vv_iw_asc_desc_mean, {'min': -12, 'max': -4}, 'vv_iw_asc_desc_mean')
m.add_layer(
vh_iw_asc_desc_mean, {'min': -18, 'max': -10}, 'vh_iw_asc_desc_mean'
)
m.add_layer(vh_iw_asc_mean, {'min': -18, 'max': -10}, 'vh_iw_asc_mean')
m.add_layer(vh_iw_desc_mean, {'min': -18, 'max': -10}, 'vh_iw_desc_mean')
m.set_center(-73.8719, 4.512, 9) # Bogota, Colombia
m
עיבוד מקדים של Sentinel-1
התמונות ב-'COPERNICUS/S1_GRD'
Sentinel-1ImageCollection
ב-Earth Engine מורכבות מתצוגות ברמה 1 של נתוני GRD (Ground Range Detected) שעברו עיבוד לחישוב מקדם ההחזרה הרפלקטיבית (σ°) בדציבלים (dB). מקדם ההחזרה החוזרת מייצג את שטח ההחזרה החוזרת של היעד (חתך רוחב של מכשיר ראדאר) ליחידת שטח יבשתי. מכיוון שהיא יכולה להשתנות בכמה סדרי גודל, היא מומרת ל-dB כ-10*log10σ°. היא מודדת אם פני השטח המוקרנים מפזרים את קרינה המיקרוגל הנכנסת הרחק יותר מסנסור ה-SAR (dB < 0) או לכיוון סנסור ה-SAR (dB > 0). אופן ההתפזרות הזה תלוי במאפיינים הפיזיים של השטח, בעיקר בגיאומטריה של רכיבי השטח ובמאפיינים האלקטרומגנטיים שלהם.
כדי לחשב את מקדם ההחזרה הרפלקטיבית (backscatter) בכל פיקסל, מערכת Earth Engine משתמשת בשלבים הבאים של עיבוד מקדים (כפי שהם מיושמים על ידי Sentinel-1 Toolbox):
- החלת קובץ מסלול
- מעדכן את המטא-נתונים של מסלול באמצעות קובץ מסלול ששוחזר (או קובץ מסלול מדויק אם קובץ השחזור לא זמין).
- הסרת רעשי גבול ב-GRD
- הסרת רעשים בעוצמה נמוכה ונתונים לא חוקיים בקצוות התמונה.
(נכון ל-12 בינואר 2018)
- הסרת רעשי רקע תרמיים
- הסרת רעשי תוספת בשטחי צילומים משניים כדי לצמצם את הפערים בין שטחי הצילומים המשניים בסצנות במצבי צילום עם כמה שטחי צילומים.
(לא ניתן להחיל את הפעולה הזו על תמונות שנוצרו לפני יולי 2015)
- החלת ערכי כיול רדיומטרי
- חישוב עוצמת ההחזרה החוזרת באמצעות פרמטרים של כיול חיישן במטא-נתונים של GRD.
- תיקון פני השטח (אורתו-ריקטיבציה)
- המרת נתונים מגיאומטריה של טווח הקרקע, שלא מביאה בחשבון את פני השטח, ל-σ° באמצעות SRTM 30 meter DEM או ASTER DEM לקו רוחב גבוה (יותר מ-60° או פחות מ-60°).
הערות על מערך נתונים
- לא מתבצעת יישור שטח רדיומטרי בגלל פגמים במורדות ההרים.
- מקדם ההחזרה לאחור ללא יחידה מומר ל-dB כפי שמתואר למעלה.
- אי אפשר כרגע להטמיע נתוני SLC של Sentinel-1, כי מערכת Earth Engine לא תומכת בתמונות עם ערכים מורכבים בגלל אי היכולת לחשב את הממוצע שלהן במהלך הפירמידה בלי לאבד את פרטי הפאזה.
- נכסי GRD SM לא עוברים הטמעה כי הפונקציה
computeNoiseScalingFactor()
בפעולת הסרת הרעש של הגבולות בכלי S1 לא תומכת במצב SM.
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-25 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-25 (שעון UTC)."],[[["\u003cp\u003eSentinel-1, part of the Copernicus Programme, provides C-band SAR data for various applications.\u003c/p\u003e\n"],["\u003cp\u003ePre-processing of Sentinel-1 data in Earth Engine involves filtering by metadata and applying specific algorithms.\u003c/p\u003e\n"],["\u003cp\u003eMetadata filtering is crucial for creating a homogeneous subset of data based on polarization, instrument mode, and orbit properties.\u003c/p\u003e\n"],["\u003cp\u003eEarth Engine automatically applies preprocessing steps including orbit file application, noise removal, radiometric calibration, and terrain correction to Sentinel-1 GRD data.\u003c/p\u003e\n"],["\u003cp\u003eThe data represents backscatter coefficient (σ°) in decibels (dB) and undergoes several processing steps to derive this value.\u003c/p\u003e\n"]]],["Sentinel-1 data, collected by the European Space Agency, is pre-processed in Earth Engine to obtain calibrated imagery. Key actions include filtering the heterogeneous data using metadata properties like `transmitterReceiverPolarisation`, `instrumentMode`, `orbitProperties_pass`, `resolution_meters`, and `resolution`. This is demonstrated in code examples using JavaScript and Python, calculating temporal means for visualization. Preprocessing steps involve applying orbit files, removing noise, radiometric calibration, and terrain correction to derive the backscatter coefficient in decibels (dB).\n"],null,["# Sentinel-1 Algorithms\n\n[Sentinel-1](https://earth.esa.int/web/sentinel/missions/sentinel-1) is a\nspace mission funded by the European Union and carried out by the European Space Agency\n(ESA) within the Copernicus Programme. Sentinel-1 collects C-band synthetic aperture\nradar (SAR) imagery at a variety of polarizations and resolutions. Since radar data\nrequires several specialized algorithms to obtain calibrated, orthorectified imagery,\nthis document describes pre-processing of Sentinel-1 data in Earth Engine.\n\nSentinel-1 data is collected with several different instrument configurations,\nresolutions, band combinations during both ascending and descending orbits. Because\nof this heterogeneity, it's usually necessary to filter the data down to a\nhomogeneous subset before starting processing. This process is outlined below in the\n[Metadata and Filtering](/earth-engine/guides/sentinel1#metadata-and-filtering) section.\n\nMetadata and Filtering\n----------------------\n\nTo create a homogeneous subset of Sentinel-1 data, it will usually be necessary to\nfilter the collection using metadata properties. The common metadata fields used for\nfiltering include these properties:\n\n1. `transmitterReceiverPolarisation`: \\['VV'\\], \\['HH'\\], \\['VV', 'VH'\\], or \\['HH', 'HV'\\]\n2. `instrumentMode`: 'IW' (Interferometric Wide Swath), 'EW' (Extra Wide Swath) or 'SM' (Strip Map). See [this\n reference](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes) for details.\n3. `orbitProperties_pass`: 'ASCENDING' or 'DESCENDING'\n4. `resolution_meters`: 10, 25 or 40\n5. `resolution`: 'M' (medium) or 'H' (high). See [this\n reference](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-ground-range-detected) for details.\n\nThe following code filters the Sentinel-1 collection by\n`transmitterReceiverPolarisation`, `instrumentMode`, and\n`orbitProperties_pass` properties, then calculates composites for several\nobservation combinations that are displayed in the map to demonstrate how these\ncharacteristics affect the data.\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.\nvar sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD')\n .filterDate('2020-06-01', '2020-10-01');\n\n// Filter the Sentinel-1 collection by metadata properties.\nvar vvVhIw = sentinel1\n // Filter to get images with VV and VH dual polarization.\n .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))\n .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))\n // Filter to get images collected in interferometric wide swath mode.\n .filter(ee.Filter.eq('instrumentMode', 'IW'));\n\n// Separate ascending and descending orbit images into distinct collections.\nvar vvVhIwAsc = vvVhIw.filter(\n ee.Filter.eq('orbitProperties_pass', 'ASCENDING'));\nvar vvVhIwDesc = vvVhIw.filter(\n ee.Filter.eq('orbitProperties_pass', 'DESCENDING'));\n\n// Calculate temporal means for various observations to use for visualization.\n// Mean VH ascending.\nvar vhIwAscMean = vvVhIwAsc.select('VH').mean();\n// Mean VH descending.\nvar vhIwDescMean = vvVhIwDesc.select('VH').mean();\n// Mean VV for combined ascending and descending image collections.\nvar vvIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VV').mean();\n// Mean VH for combined ascending and descending image collections.\nvar vhIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VH').mean();\n\n// Display the temporal means for various observations, compare them.\nMap.addLayer(vvIwAscDescMean, {min: -12, max: -4}, 'vvIwAscDescMean');\nMap.addLayer(vhIwAscDescMean, {min: -18, max: -10}, 'vhIwAscDescMean');\nMap.addLayer(vhIwAscMean, {min: -18, max: -10}, 'vhIwAscMean');\nMap.addLayer(vhIwDescMean, {min: -18, max: -10}, 'vhIwDescMean');\nMap.setCenter(-73.8719, 4.512, 9); // Bogota, Colombia\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.\nsentinel_1 = ee.ImageCollection('COPERNICUS/S1_GRD').filterDate(\n '2020-06-01', '2020-10-01'\n)\n\n# Filter the Sentinel-1 collection by metadata properties.\nvv_vh_iw = (\n sentinel_1.filter(\n # Filter to get images with VV and VH dual polarization.\n ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')\n )\n .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))\n .filter(\n # Filter to get images collected in interferometric wide swath mode.\n ee.Filter.eq('instrumentMode', 'IW')\n )\n)\n\n# Separate ascending and descending orbit images into distinct collections.\nvv_vh_iw_asc = vv_vh_iw.filter(\n ee.Filter.eq('orbitProperties_pass', 'ASCENDING')\n)\nvv_vh_iw_desc = vv_vh_iw.filter(\n ee.Filter.eq('orbitProperties_pass', 'DESCENDING')\n)\n\n# Calculate temporal means for various observations to use for visualization.\n# Mean VH ascending.\nvh_iw_asc_mean = vv_vh_iw_asc.select('VH').mean()\n# Mean VH descending.\nvh_iw_desc_mean = vv_vh_iw_desc.select('VH').mean()\n# Mean VV for combined ascending and descending image collections.\nvv_iw_asc_desc_mean = vv_vh_iw_asc.merge(vv_vh_iw_desc).select('VV').mean()\n# Mean VH for combined ascending and descending image collections.\nvh_iw_asc_desc_mean = vv_vh_iw_asc.merge(vv_vh_iw_desc).select('VH').mean()\n\n# Display the temporal means for various observations, compare them.\nm = geemap.Map()\nm.add_layer(vv_iw_asc_desc_mean, {'min': -12, 'max': -4}, 'vv_iw_asc_desc_mean')\nm.add_layer(\n vh_iw_asc_desc_mean, {'min': -18, 'max': -10}, 'vh_iw_asc_desc_mean'\n)\nm.add_layer(vh_iw_asc_mean, {'min': -18, 'max': -10}, 'vh_iw_asc_mean')\nm.add_layer(vh_iw_desc_mean, {'min': -18, 'max': -10}, 'vh_iw_desc_mean')\nm.set_center(-73.8719, 4.512, 9) # Bogota, Colombia\nm\n```\n\nSentinel-1 Preprocessing\n------------------------\n\nImagery in the Earth Engine `'COPERNICUS/S1_GRD'` Sentinel-1\n`ImageCollection` is consists of Level-1 Ground Range Detected\n(GRD) scenes processed to backscatter coefficient (σ°) in\ndecibels (dB). The backscatter coefficient represents\ntarget backscattering area (radar cross-section) per unit ground area. Because it can\nvary by several orders of magnitude, it is converted to dB as\n10\\*log~10~σ°. It measures whether the radiated terrain scatters\nthe incident microwave radiation preferentially away from the SAR sensor\ndB \\\u003c 0) or towards the SAR sensor dB \\\u003e 0). This scattering behavior depends on the\nphysical characteristics of the terrain, primarily the geometry of the terrain elements\nand their electromagnetic characteristics.\n\nEarth Engine uses the following preprocessing steps (as implemented by the\n[Sentinel-1 Toolbox](https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1))\nto derive the backscatter coefficient in each pixel:\n\n1. **Apply orbit file**\n - Updates orbit metadata with a restituted [orbit file](https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/pod/products-requirements) (or a precise orbit file if the restituted one is not available).\n2. **GRD border noise removal**\n - Removes low intensity noise and invalid data on scene edges. (As of January 12, 2018)\n3. **Thermal noise removal**\n - Removes additive noise in sub-swaths to help reduce discontinuities between sub-swaths for scenes in multi-swath acquisition modes. (This operation cannot be applied to images produced before July 2015)\n4. **Application of radiometric calibration values**\n - Computes backscatter intensity using sensor calibration parameters in the GRD metadata.\n5. **Terrain correction** (orthorectification)\n - Converts data from ground range geometry, which does not take terrain into account, to σ° using the [SRTM 30 meter DEM](/earth-engine/datasets/catalog/USGS_SRTMGL1_003) or the [ASTER DEM](https://asterweb.jpl.nasa.gov/gdem.asp) for high latitudes (greater than 60° or less than -60°).\n\nDataset Notes\n-------------\n\n- Radiometric Terrain Flattening is not being applied due to artifacts on mountain slopes.\n- The unitless backscatter coefficient is converted to dB as described above.\n- Sentinel-1 SLC data cannot currently be ingested, as Earth Engine does not support images with complex values due to inability to average them during pyramiding without losing phase information.\n- GRD SM assets are not ingested because the `computeNoiseScalingFactor()` function in the [border noise removal operation in the S1 toolbox](https://github.com/senbox-org/s1tbx/blob/master/s1tbx-op-calibration/src/main/java/org/esa/s1tbx/calibration/gpf/RemoveGRDBorderNoiseOp.java) does not support the SM mode."]]