ee.Classifier.smileNaiveBayes

Tạo một trình phân loại Naive Bayes trống. Trình phân loại này giả định rằng vectơ đặc trưng bao gồm các số nguyên dương và các đầu vào âm sẽ bị loại bỏ.

Cách sử dụngGiá trị trả về
ee.Classifier.smileNaiveBayes(lambda)Công cụ phân loại
Đối sốLoạiThông tin chi tiết
lambdaĐộ chính xác đơn, mặc định: 0,000001Một hàm lambda làm mượt. Được dùng để tránh gán xác suất bằng 0 cho các lớp không xuất hiện trong quá trình huấn luyện, thay vào đó sử dụng lambda / (lambda * nFeatures).

Ví dụ

Trình soạn thảo mã (JavaScript)

// A Sentinel-2 surface reflectance image, reflectance bands selected,
// serves as the source for training and prediction in this contrived example.
var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
              .select('B.*');

// ESA WorldCover land cover map, used as label source in classifier training.
var lc = ee.Image('ESA/WorldCover/v100/2020');

// Remap the land cover class values to a 0-based sequential series.
var classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];
var remapValues = ee.List.sequence(0, 10);
var label = 'lc';
lc = lc.remap(classValues, remapValues).rename(label).toByte();

// Add land cover as a band of the reflectance image and sample 100 pixels at
// 10 m scale from each land cover class within a region of interest.
var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838);
var sample = img.addBands(lc).stratifiedSample({
  numPoints: 100,
  classBand: label,
  region: roi,
  scale: 10,
  geometries: true
});

// Add a random value field to the sample and use it to approximately split 80%
// of the features into a training set and 20% into a validation set.
sample = sample.randomColumn();
var trainingSample = sample.filter('random <= 0.8');
var validationSample = sample.filter('random > 0.8');

// Train a Naive Bayes classifier from the training sample.
var trainedClassifier = ee.Classifier.smileNaiveBayes().train({
  features: trainingSample,
  classProperty: label,
  inputProperties: img.bandNames()
});

// Get information about the trained classifier.
print('Results of trained classifier', trainedClassifier.explain());

// Get a confusion matrix and overall accuracy for the training sample.
var trainAccuracy = trainedClassifier.confusionMatrix();
print('Training error matrix', trainAccuracy);
print('Training overall accuracy', trainAccuracy.accuracy());

// Get a confusion matrix and overall accuracy for the validation sample.
validationSample = validationSample.classify(trainedClassifier);
var validationAccuracy = validationSample.errorMatrix(label, 'classification');
print('Validation error matrix', validationAccuracy);
print('Validation accuracy', validationAccuracy.accuracy());

// Classify the reflectance image from the trained classifier.
var imgClassified = img.classify(trainedClassifier);

// Add the layers to the map.
var classVis = {
  min: 0,
  max: 10,
  palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4',
            'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0']
};
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img');
Map.addLayer(lc, classVis, 'lc');
Map.addLayer(imgClassified, classVis, 'Classified');
Map.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5);
Map.addLayer(trainingSample, {color: 'black'}, 'Training sample', false);
Map.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);

Thiết lập Python

Hãy xem trang Môi trường Python để biết thông tin về API Python và cách sử dụng geemap cho quá trình phát triển tương tác.

import ee
import geemap.core as geemap

Colab (Python)

# A Sentinel-2 surface reflectance image, reflectance bands selected,
# serves as the source for training and prediction in this contrived example.
img = ee.Image(
    'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG'
).select('B.*')

# ESA WorldCover land cover map, used as label source in classifier training.
lc = ee.Image('ESA/WorldCover/v100/2020')

# Remap the land cover class values to a 0-based sequential series.
class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100]
remap_values = ee.List.sequence(0, 10)
label = 'lc'
lc = lc.remap(class_values, remap_values).rename(label).toByte()

# Add land cover as a band of the reflectance image and sample 100 pixels at
# 10 m scale from each land cover class within a region of interest.
roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838)
sample = img.addBands(lc).stratifiedSample(
    numPoints=100, classBand=label, region=roi, scale=10, geometries=True
)

# Add a random value field to the sample and use it to approximately split 80%
# of the features into a training set and 20% into a validation set.
sample = sample.randomColumn()
training_sample = sample.filter('random <= 0.8')
validation_sample = sample.filter('random > 0.8')

# Train a Naive Bayes classifier from the training sample.
trained_classifier = ee.Classifier.smileNaiveBayes().train(
    features=training_sample,
    classProperty=label,
    inputProperties=img.bandNames(),
)

# Get information about the trained classifier.
display('Results of trained classifier', trained_classifier.explain())

# Get a confusion matrix and overall accuracy for the training sample.
train_accuracy = trained_classifier.confusionMatrix()
display('Training error matrix', train_accuracy)
display('Training overall accuracy', train_accuracy.accuracy())

# Get a confusion matrix and overall accuracy for the validation sample.
validation_sample = validation_sample.classify(trained_classifier)
validation_accuracy = validation_sample.errorMatrix(label, 'classification')
display('Validation error matrix', validation_accuracy)
display('Validation accuracy', validation_accuracy.accuracy())

# Classify the reflectance image from the trained classifier.
img_classified = img.classify(trained_classifier)

# Add the layers to the map.
class_vis = {
    'min': 0,
    'max': 10,
    'palette': [
        '006400',
        'ffbb22',
        'ffff4c',
        'f096ff',
        'fa0000',
        'b4b4b4',
        'f0f0f0',
        '0064c8',
        '0096a0',
        '00cf75',
        'fae6a0',
    ],
}
m = geemap.Map()
m.set_center(-122.184, 37.796, 12)
m.add_layer(
    img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img'
)
m.add_layer(lc, class_vis, 'lc')
m.add_layer(img_classified, class_vis, 'Classified')
m.add_layer(roi, {'color': 'white'}, 'ROI', False, 0.5)
m.add_layer(training_sample, {'color': 'black'}, 'Training sample', False)
m.add_layer(
    validation_sample, {'color': 'white'}, 'Validation sample', False
)
m