お知らせ:
2025 年 4 月 15 日より前に Earth Engine の使用を登録したすべての非商用プロジェクトは、アクセスを維持するために
非商用目的での利用資格を確認する必要があります。2025 年 9 月 26 日までに確認が完了していない場合、アクセスが保留されることがあります。
ee.ConfusionMatrix.accuracy
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
混同行列の全体的な精度(正解数 / 合計数)を計算します。
| 用途 | 戻り値 |
|---|
ConfusionMatrix.accuracy() | 浮動小数点数 |
| 引数 | タイプ | 詳細 |
|---|
これ: confusionMatrix | ConfusionMatrix | |
例
コードエディタ(JavaScript)
// Construct a confusion matrix from an array (rows are actual values,
// columns are predicted values). We construct a confusion matrix here for
// brevity and clear visualization, in most applications the confusion matrix
// will be generated from ee.Classifier.confusionMatrix.
var array = ee.Array([[32, 0, 0, 0, 1, 0],
[ 0, 5, 0, 0, 1, 0],
[ 0, 0, 1, 3, 0, 0],
[ 0, 1, 4, 26, 8, 0],
[ 0, 0, 0, 7, 15, 0],
[ 0, 0, 0, 1, 0, 5]]);
var confusionMatrix = ee.ConfusionMatrix(array);
print("Constructed confusion matrix", confusionMatrix);
// Calculate overall accuracy.
print("Overall accuracy", confusionMatrix.accuracy());
// Calculate consumer's accuracy, also known as user's accuracy or
// specificity and the complement of commission error (1 − commission error).
print("Consumer's accuracy", confusionMatrix.consumersAccuracy());
// Calculate producer's accuracy, also known as sensitivity and the
// compliment of omission error (1 − omission error).
print("Producer's accuracy", confusionMatrix.producersAccuracy());
// Calculate kappa statistic.
print('Kappa statistic', confusionMatrix.kappa());
Python の設定
Python API とインタラクティブな開発での geemap の使用については、
Python 環境のページをご覧ください。
import ee
import geemap.core as geemap
Colab(Python)
# Construct a confusion matrix from an array (rows are actual values,
# columns are predicted values). We construct a confusion matrix here for
# brevity and clear visualization, in most applications the confusion matrix
# will be generated from ee.Classifier.confusionMatrix.
array = ee.Array([[32, 0, 0, 0, 1, 0],
[ 0, 5, 0, 0, 1, 0],
[ 0, 0, 1, 3, 0, 0],
[ 0, 1, 4, 26, 8, 0],
[ 0, 0, 0, 7, 15, 0],
[ 0, 0, 0, 1, 0, 5]])
confusion_matrix = ee.ConfusionMatrix(array)
display("Constructed confusion matrix:", confusion_matrix)
# Calculate overall accuracy.
display("Overall accuracy:", confusion_matrix.accuracy())
# Calculate consumer's accuracy, also known as user's accuracy or
# specificity and the complement of commission error (1 − commission error).
display("Consumer's accuracy:", confusion_matrix.consumersAccuracy())
# Calculate producer's accuracy, also known as sensitivity and the
# compliment of omission error (1 − omission error).
display("Producer's accuracy:", confusion_matrix.producersAccuracy())
# Calculate kappa statistic.
display("Kappa statistic:", confusion_matrix.kappa())
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-10-30 UTC。
[null,null,["最終更新日 2025-10-30 UTC。"],[],["The content details the computation of a confusion matrix's overall accuracy, calculated as correct predictions divided by the total. It demonstrates how to construct a `ConfusionMatrix` object from an array, representing actual vs. predicted values. The `accuracy()` method returns a float representing this overall accuracy. Other methods shown include calculating consumer's and producer's accuracy, and the kappa statistic using a `ConfusionMatrix`. Both JavaScript and Python examples are provided.\n"]]