ee.ConfusionMatrix

Tạo ma trận nhầm lẫn. Trục 0 (các hàng) của ma trận tương ứng với các giá trị thực tế và Trục 1 (các cột) tương ứng với các giá trị dự đoán.

Cách sử dụngGiá trị trả về
ee.ConfusionMatrix(array, order)ConfusionMatrix
Đối sốLoạiThông tin chi tiết
arrayĐối tượngMột mảng vuông gồm các số nguyên 2D, biểu thị ma trận nhầm lẫn. Xin lưu ý rằng không giống như hàm khởi tạo ee.Array, đối số này không thể lấy một danh sách.
orderDanh sách, mặc định: nullKích thước và thứ tự của hàng và cột, đối với ma trận không liền kề hoặc không dựa trên số 0.

Ví dụ

Trình soạn thảo mã (JavaScript)

// A confusion matrix. Rows correspond to actual values, columns to
// predicted values.
var array = ee.Array([[32, 0, 0,  0,  1, 0],
                      [ 0, 5, 0,  0,  1, 0],
                      [ 0, 0, 1,  3,  0, 0],
                      [ 0, 1, 4, 26,  8, 0],
                      [ 0, 0, 0,  7, 15, 0],
                      [ 0, 0, 0,  1,  0, 5]]);
print('Constructed confusion matrix',
      ee.ConfusionMatrix(array));

// The "order" parameter refers to row and column class labels. When
// unspecified, the class labels are assumed to be a 0-based sequence
// incrementing by 1 with a length equal to row/column size.
print('Default row/column labels (unspecified "order" parameter)',
      ee.ConfusionMatrix({array: array, order: null}).order());

// Set the "order" parameter when custom class label integers are required. The
// list of integer value labels should correspond to the matrix axes left to
// right / top to bottom.
var order = [11, 22, 42, 52, 71, 81];
print('Specified row/column labels (specified "order" parameter)',
      ee.ConfusionMatrix({array: array, order: order}).order());

Thiết lập Python

Hãy xem trang Môi trường Python để biết thông tin về API Python và cách sử dụng geemap cho quá trình phát triển tương tác.

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

# A confusion matrix. Rows correspond to actual values, columns to
# predicted values.
array = ee.Array([[32, 0, 0,  0,  1, 0],
                  [ 0, 5, 0,  0,  1, 0],
                  [ 0, 0, 1,  3,  0, 0],
                  [ 0, 1, 4, 26,  8, 0],
                  [ 0, 0, 0,  7, 15, 0],
                  [ 0, 0, 0,  1,  0, 5]])
print('Constructed confusion matrix:')
pprint(ee.ConfusionMatrix(array).getInfo())

# The "order" parameter refers to row and column class labels. When
# unspecified, the class labels are assumed to be a 0-based sequence
# incrementing by 1 with a length equal to row/column size.
print('Default row/column labels (unspecified "order" parameter):',
      ee.ConfusionMatrix(array, None).order().getInfo())

# Set the "order" parameter when custom class label integers are required. The
# list of integer value labels should correspond to the matrix axes left to
# right / top to bottom.
order = [11, 22, 42, 52, 71, 81]
print('Specified row/column labels (specified "order" parameter):',
      ee.ConfusionMatrix(array, order).order().getInfo())