ee.FeatureCollection.aggregate_histogram
Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
Agreguje dane dotyczące wybranej właściwości obiektów w kolekcji, obliczając histogram tej właściwości.
Wykorzystanie | Zwroty |
---|
FeatureCollection.aggregate_histogram(property) | Słownik |
Argument | Typ | Szczegóły |
---|
to: collection | FeatureCollection | Kolekcja, po której ma nastąpić agregacja. |
property | Ciąg znaków | Właściwość do użycia z każdego elementu kolekcji. |
Przykłady
Edytor kodu (JavaScript)
// FeatureCollection of power plants in Belgium.
var fc = ee.FeatureCollection('WRI/GPPD/power_plants')
.filter('country_lg == "Belgium"');
print('Histogram of power plant capacities (MW)',
fc.aggregate_histogram('capacitymw')); // Dictionary
Konfiguracja Pythona
Informacje o interfejsie Python API i używaniu geemap
do interaktywnego programowania znajdziesz na stronie
Środowisko Python.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# FeatureCollection of power plants in Belgium.
fc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(
'country_lg == "Belgium"')
print('Histogram of power plant capacities (MW):')
pprint(fc.aggregate_histogram('capacitymw').getInfo()) # Dictionary
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-26 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-26 UTC."],[[["\u003cp\u003eComputes a histogram for a specified property within a FeatureCollection.\u003c/p\u003e\n"],["\u003cp\u003eReturns a dictionary where keys represent property value ranges and values represent the frequency of features within that range.\u003c/p\u003e\n"],["\u003cp\u003eUseful for understanding the distribution of a specific attribute, such as the capacity of power plants in a region.\u003c/p\u003e\n"]]],["The `aggregate_histogram` method calculates a histogram for a specified property across a FeatureCollection. It takes the collection and the property name as input. The output is a dictionary representing the histogram. In the provided examples, a FeatureCollection of Belgian power plants is used, and a histogram of their capacities (in MW) is generated using `aggregate_histogram('capacitymw')`. The method works on both the Javascript and Python Earth Engine APIs.\n"],null,["# ee.FeatureCollection.aggregate_histogram\n\nAggregates over a given property of the objects in a collection, calculating a histogram of the selected property.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------------------|------------|\n| FeatureCollection.aggregate_histogram`(property)` | Dictionary |\n\n| Argument | Type | Details |\n|--------------------|-------------------|----------------------------------------------------------|\n| this: `collection` | FeatureCollection | The collection to aggregate over. |\n| `property` | String | The property to use from each element of the collection. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// FeatureCollection of power plants in Belgium.\nvar fc = ee.FeatureCollection('WRI/GPPD/power_plants')\n .filter('country_lg == \"Belgium\"');\n\nprint('Histogram of power plant capacities (MW)',\n fc.aggregate_histogram('capacitymw')); // Dictionary\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# FeatureCollection of power plants in Belgium.\nfc = ee.FeatureCollection('WRI/GPPD/power_plants').filter(\n 'country_lg == \"Belgium\"')\n\nprint('Histogram of power plant capacities (MW):')\npprint(fc.aggregate_histogram('capacitymw').getInfo()) # Dictionary\n```"]]