Pengumuman: Semua project nonkomersial yang terdaftar untuk menggunakan Earth Engine sebelum 
15 April 2025 harus 
memverifikasi kelayakan nonkomersial untuk mempertahankan akses. Jika Anda belum melakukan verifikasi hingga 26 September 2025, akses Anda mungkin ditangguhkan.
  
        
 
       
     
  
  
  
    
  
  
  
    
      ee.FeatureCollection.classify
    
    
      
    
    
      
      Tetap teratur dengan koleksi
    
    
      
      Simpan dan kategorikan konten berdasarkan preferensi Anda.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
    
  
  
Mengklasifikasikan setiap fitur dalam koleksi.
| Penggunaan | Hasil | 
|---|
| FeatureCollection.classify(classifier, outputName) | FeatureCollection | 
| Argumen | Jenis | Detail | 
|---|
| ini: features | FeatureCollection | Kumpulan fitur yang akan diklasifikasikan. Setiap fitur harus berisi semua properti dalam skema pengklasifikasi. | 
| classifier | Pengklasifikasi | Pengklasifikasi yang akan digunakan. | 
| outputName | String, default: "classification" | Nama properti output yang akan ditambahkan. Argumen ini diabaikan jika pengklasifikasi memiliki lebih dari satu output. | 
  
  
  Contoh
  
    
  
  
    
    
  
  
  
  
    
    
    
      Code Editor (JavaScript)
    
    
  /**
 * Classifies features in a FeatureCollection and computes an error matrix.
 */
// Combine Landsat and NLCD images using only the bands representing
// predictor variables (spectral reflectance) and target labels (land cover).
var spectral =
    ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select('SR_B[1-7]');
var landcover =
    ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover');
var sampleSource = spectral.addBands(landcover);
// Sample the combined images to generate a FeatureCollection.
var sample = sampleSource.sample({
  region: spectral.geometry(),  // sample only from within Landsat image extent
  scale: 30,
  numPixels: 2000,
  geometries: true
})
// Add a random value column with uniform distribution for hold-out
// training/validation splitting.
.randomColumn({distribution: 'uniform'});
print('Sample for classifier development', sample);
// Split out ~80% of the sample for training the classifier.
var training = sample.filter('random < 0.8');
print('Training set', training);
// Train a random forest classifier.
var classifier = ee.Classifier.smileRandomForest(10).train({
  features: training,
  classProperty: landcover.bandNames().get(0),
  inputProperties: spectral.bandNames()
});
// Classify the sample.
var predictions = sample.classify(
    {classifier: classifier, outputName: 'predicted_landcover'});
print('Predictions', predictions);
// Split out the validation feature set.
var validation = predictions.filter('random >= 0.8');
print('Validation set', validation);
// Get a list of possible class values to use for error matrix axis labels.
var order = sample.aggregate_array('landcover').distinct().sort();
print('Error matrix axis labels', order);
// Compute an error matrix that compares predicted vs. expected values.
var errorMatrix = validation.errorMatrix({
  actual: landcover.bandNames().get(0),
  predicted: 'predicted_landcover',
  order: order
});
print('Error matrix', errorMatrix);
// Compute accuracy metrics from the error matrix.
print("Overall accuracy", errorMatrix.accuracy());
print("Consumer's accuracy", errorMatrix.consumersAccuracy());
print("Producer's accuracy", errorMatrix.producersAccuracy());
print("Kappa", errorMatrix.kappa());
  
    
  
  
    
  
  
  
  
    
  
    
  Penyiapan Python
  Lihat halaman 
    Lingkungan Python untuk mengetahui informasi tentang Python API dan penggunaan
    geemap untuk pengembangan interaktif.
  import ee
import geemap.core as geemap
  
    
    
      Colab (Python)
    
    
  # Classifies features in a FeatureCollection and computes an error matrix.
# Combine Landsat and NLCD images using only the bands representing
# predictor variables (spectral reflectance) and target labels (land cover).
spectral = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select(
    'SR_B[1-7]')
landcover = ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover')
sample_source = spectral.addBands(landcover)
# Sample the combined images to generate a FeatureCollection.
sample = sample_source.sample(**{
    # sample only from within Landsat image extent
    'region': spectral.geometry(),
    'scale': 30,
    'numPixels': 2000,
    'geometries': True
})
# Add a random value column with uniform distribution for hold-out
# training/validation splitting.
sample = sample.randomColumn(**{'distribution': 'uniform'})
display('Sample for classifier development:', sample)
# Split out ~80% of the sample for training the classifier.
training = sample.filter('random < 0.8')
display('Training set:', training)
# Train a random forest classifier.
classifier = ee.Classifier.smileRandomForest(10).train(**{
    'features': training,
    'classProperty': landcover.bandNames().get(0),
    'inputProperties': spectral.bandNames()
})
# Classify the sample.
predictions = sample.classify(
    **{'classifier': classifier, 'outputName': 'predicted_landcover'})
display('Predictions:', predictions)
# Split out the validation feature set.
validation = predictions.filter('random >= 0.8')
display('Validation set:', validation)
# Get a list of possible class values to use for error matrix axis labels.
order = sample.aggregate_array('landcover').distinct().sort()
display('Error matrix axis labels:', order)
# Compute an error matrix that compares predicted vs. expected values.
error_matrix = validation.errorMatrix(**{
    'actual': landcover.bandNames().get(0),
    'predicted': 'predicted_landcover',
    'order': order
})
display('Error matrix:', error_matrix)
# Compute accuracy metrics from the error matrix.
display('Overall accuracy:', error_matrix.accuracy())
display('Consumer\'s accuracy:', error_matrix.consumersAccuracy())
display('Producer\'s accuracy:', error_matrix.producersAccuracy())
display('Kappa:', error_matrix.kappa())
  
  
  
  
  
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
  Terakhir diperbarui pada 2025-10-30 UTC.
  
  
  
    
      [null,null,["Terakhir diperbarui pada 2025-10-30 UTC."],[],[]]