Ogłoszenie:  wszystkie projekty niekomercyjne zarejestrowane do korzystania z Earth Engine przed 
15 kwietnia 2025 r. muszą 
potwierdzić spełnianie warunków użycia niekomercyjnego, aby zachować dostęp. Jeśli nie przejdziesz weryfikacji do 26 września 2025 r., Twój dostęp może zostać wstrzymany.
  
        
 
       
     
  
  
  
    
  
  
  
    
      ee.FeatureCollection.classify
    
    
      
    
    
      
      Zadbaj o dobrą organizację dzięki kolekcji
    
    
      
      Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
    
  
  
Klasyfikuje każdy element w kolekcji.
| Wykorzystanie | Zwroty | 
|---|
| FeatureCollection.classify(classifier, outputName) | FeatureCollection | 
| Argument | Typ | Szczegóły | 
|---|
| to: features | FeatureCollection | Zbiór cech do sklasyfikowania. Każda cecha musi zawierać wszystkie właściwości w schemacie klasyfikatora. | 
| classifier | Klasyfikator | Klasyfikator, którego chcesz użyć. | 
| outputName | Ciąg znaków, domyślnie: „classification” | Nazwa właściwości wyjściowej, która ma zostać dodana. Ten argument jest ignorowany, jeśli klasyfikator ma więcej niż 1 dane wyjściowe. | 
  
  
  Przykłady
  
    
  
  
    
    
  
  
  
  
    
    
    
      Edytor kodu (JavaScript)
    
    
  /**
 * Classifies features in a FeatureCollection and computes an error matrix.
 */
// Combine Landsat and NLCD images using only the bands representing
// predictor variables (spectral reflectance) and target labels (land cover).
var spectral =
    ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select('SR_B[1-7]');
var landcover =
    ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover');
var sampleSource = spectral.addBands(landcover);
// Sample the combined images to generate a FeatureCollection.
var sample = sampleSource.sample({
  region: spectral.geometry(),  // sample only from within Landsat image extent
  scale: 30,
  numPixels: 2000,
  geometries: true
})
// Add a random value column with uniform distribution for hold-out
// training/validation splitting.
.randomColumn({distribution: 'uniform'});
print('Sample for classifier development', sample);
// Split out ~80% of the sample for training the classifier.
var training = sample.filter('random < 0.8');
print('Training set', training);
// Train a random forest classifier.
var classifier = ee.Classifier.smileRandomForest(10).train({
  features: training,
  classProperty: landcover.bandNames().get(0),
  inputProperties: spectral.bandNames()
});
// Classify the sample.
var predictions = sample.classify(
    {classifier: classifier, outputName: 'predicted_landcover'});
print('Predictions', predictions);
// Split out the validation feature set.
var validation = predictions.filter('random >= 0.8');
print('Validation set', validation);
// Get a list of possible class values to use for error matrix axis labels.
var order = sample.aggregate_array('landcover').distinct().sort();
print('Error matrix axis labels', order);
// Compute an error matrix that compares predicted vs. expected values.
var errorMatrix = validation.errorMatrix({
  actual: landcover.bandNames().get(0),
  predicted: 'predicted_landcover',
  order: order
});
print('Error matrix', errorMatrix);
// Compute accuracy metrics from the error matrix.
print("Overall accuracy", errorMatrix.accuracy());
print("Consumer's accuracy", errorMatrix.consumersAccuracy());
print("Producer's accuracy", errorMatrix.producersAccuracy());
print("Kappa", errorMatrix.kappa());
  
    
  
  
    
  
  
  
  
    
  
    
  Konfiguracja Pythona
  Informacje o interfejsie Python API i używaniu geemap do interaktywnego programowania znajdziesz na stronie 
    Środowisko Python.
  import ee
import geemap.core as geemap
  
    
    
      Colab (Python)
    
    
  # Classifies features in a FeatureCollection and computes an error matrix.
# Combine Landsat and NLCD images using only the bands representing
# predictor variables (spectral reflectance) and target labels (land cover).
spectral = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select(
    'SR_B[1-7]')
landcover = ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover')
sample_source = spectral.addBands(landcover)
# Sample the combined images to generate a FeatureCollection.
sample = sample_source.sample(**{
    # sample only from within Landsat image extent
    'region': spectral.geometry(),
    'scale': 30,
    'numPixels': 2000,
    'geometries': True
})
# Add a random value column with uniform distribution for hold-out
# training/validation splitting.
sample = sample.randomColumn(**{'distribution': 'uniform'})
display('Sample for classifier development:', sample)
# Split out ~80% of the sample for training the classifier.
training = sample.filter('random < 0.8')
display('Training set:', training)
# Train a random forest classifier.
classifier = ee.Classifier.smileRandomForest(10).train(**{
    'features': training,
    'classProperty': landcover.bandNames().get(0),
    'inputProperties': spectral.bandNames()
})
# Classify the sample.
predictions = sample.classify(
    **{'classifier': classifier, 'outputName': 'predicted_landcover'})
display('Predictions:', predictions)
# Split out the validation feature set.
validation = predictions.filter('random >= 0.8')
display('Validation set:', validation)
# Get a list of possible class values to use for error matrix axis labels.
order = sample.aggregate_array('landcover').distinct().sort()
display('Error matrix axis labels:', order)
# Compute an error matrix that compares predicted vs. expected values.
error_matrix = validation.errorMatrix(**{
    'actual': landcover.bandNames().get(0),
    'predicted': 'predicted_landcover',
    'order': order
})
display('Error matrix:', error_matrix)
# Compute accuracy metrics from the error matrix.
display('Overall accuracy:', error_matrix.accuracy())
display('Consumer\'s accuracy:', error_matrix.consumersAccuracy())
display('Producer\'s accuracy:', error_matrix.producersAccuracy())
display('Kappa:', error_matrix.kappa())
  
  
  
  
  
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
  Ostatnia aktualizacja: 2025-10-30 UTC.
  
  
  
    
      [null,null,["Ostatnia aktualizacja: 2025-10-30 UTC."],[],[]]