Ogłoszenie: wszystkie projekty niekomercyjne zarejestrowane do korzystania z Earth Engine przed
15 kwietnia 2025 r. muszą
potwierdzić spełnianie warunków użycia niekomercyjnego, aby zachować dostęp. Jeśli nie przejdziesz weryfikacji do 26 września 2025 r., Twój dostęp może zostać wstrzymany.
ee.FeatureCollection.errorMatrix
Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
Oblicza dwuwymiarową macierz błędów dla kolekcji, porównując 2 kolumny kolekcji: jedną zawierającą rzeczywiste wartości, a drugą – wartości przewidywane. Wartości powinny być małymi, kolejnymi liczbami całkowitymi, zaczynającymi się od 0. Oś 0 (wiersze) macierzy odpowiada wartościom rzeczywistym, a oś 1 (kolumny) – wartościom przewidywanym.
| Wykorzystanie | Zwroty |
|---|
FeatureCollection.errorMatrix(actual, predicted, order) | ConfusionMatrix |
| Argument | Typ | Szczegóły |
|---|
to: collection | FeatureCollection | Kolekcja wejściowa. |
actual | Ciąg znaków | Nazwa właściwości zawierającej rzeczywistą wartość. |
predicted | Ciąg znaków | Nazwa usługi zawierającej prognozowaną wartość. |
order | Lista, domyślna: null | Lista oczekiwanych wartości. Jeśli ten argument nie zostanie podany, przyjmuje się, że wartości są ciągłe i obejmują zakres od 0 do maxValue. Jeśli ta lista jest określona, używane są tylko wartości z niej, a macierz będzie miała wymiary i kolejność zgodne z tą listą. |
Przykłady
Edytor kodu (JavaScript)
/**
* Classifies features in a FeatureCollection and computes an error matrix.
*/
// Combine Landsat and NLCD images using only the bands representing
// predictor variables (spectral reflectance) and target labels (land cover).
var spectral =
ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select('SR_B[1-7]');
var landcover =
ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover');
var sampleSource = spectral.addBands(landcover);
// Sample the combined images to generate a FeatureCollection.
var sample = sampleSource.sample({
region: spectral.geometry(), // sample only from within Landsat image extent
scale: 30,
numPixels: 2000,
geometries: true
})
// Add a random value column with uniform distribution for hold-out
// training/validation splitting.
.randomColumn({distribution: 'uniform'});
print('Sample for classifier development', sample);
// Split out ~80% of the sample for training the classifier.
var training = sample.filter('random < 0.8');
print('Training set', training);
// Train a random forest classifier.
var classifier = ee.Classifier.smileRandomForest(10).train({
features: training,
classProperty: landcover.bandNames().get(0),
inputProperties: spectral.bandNames()
});
// Classify the sample.
var predictions = sample.classify(
{classifier: classifier, outputName: 'predicted_landcover'});
print('Predictions', predictions);
// Split out the validation feature set.
var validation = predictions.filter('random >= 0.8');
print('Validation set', validation);
// Get a list of possible class values to use for error matrix axis labels.
var order = sample.aggregate_array('landcover').distinct().sort();
print('Error matrix axis labels', order);
// Compute an error matrix that compares predicted vs. expected values.
var errorMatrix = validation.errorMatrix({
actual: landcover.bandNames().get(0),
predicted: 'predicted_landcover',
order: order
});
print('Error matrix', errorMatrix);
// Compute accuracy metrics from the error matrix.
print("Overall accuracy", errorMatrix.accuracy());
print("Consumer's accuracy", errorMatrix.consumersAccuracy());
print("Producer's accuracy", errorMatrix.producersAccuracy());
print("Kappa", errorMatrix.kappa());
Konfiguracja Pythona
Informacje o interfejsie Python API i używaniu geemap do interaktywnego programowania znajdziesz na stronie
Środowisko Python.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# Classifies features in a FeatureCollection and computes an error matrix.
# Combine Landsat and NLCD images using only the bands representing
# predictor variables (spectral reflectance) and target labels (land cover).
spectral = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_038032_20160820').select(
'SR_B[1-7]')
landcover = ee.Image('USGS/NLCD_RELEASES/2016_REL/2016').select('landcover')
sample_source = spectral.addBands(landcover)
# Sample the combined images to generate a FeatureCollection.
sample = sample_source.sample(**{
# sample only from within Landsat image extent
'region': spectral.geometry(),
'scale': 30,
'numPixels': 2000,
'geometries': True
})
# Add a random value column with uniform distribution for hold-out
# training/validation splitting.
sample = sample.randomColumn(**{'distribution': 'uniform'})
print('Sample for classifier development:', sample.getInfo())
# Split out ~80% of the sample for training the classifier.
training = sample.filter('random < 0.8')
print('Training set:', training.getInfo())
# Train a random forest classifier.
classifier = ee.Classifier.smileRandomForest(10).train(**{
'features': training,
'classProperty': landcover.bandNames().get(0),
'inputProperties': spectral.bandNames()
})
# Classify the sample.
predictions = sample.classify(
**{'classifier': classifier, 'outputName': 'predicted_landcover'})
print('Predictions:', predictions.getInfo())
# Split out the validation feature set.
validation = predictions.filter('random >= 0.8')
print('Validation set:', validation.getInfo())
# Get a list of possible class values to use for error matrix axis labels.
order = sample.aggregate_array('landcover').distinct().sort()
print('Error matrix axis labels:')
pprint(order.getInfo())
# Compute an error matrix that compares predicted vs. expected values.
error_matrix = validation.errorMatrix(**{
'actual': landcover.bandNames().get(0),
'predicted': 'predicted_landcover',
'order': order
})
print('Error matrix:')
pprint(error_matrix.getInfo())
# Compute accuracy metrics from the error matrix.
print('Overall accuracy:', error_matrix.accuracy().getInfo())
print('Consumer\'s accuracy:')
pprint(error_matrix.consumersAccuracy().getInfo())
print('Producer\'s accuracy:')
pprint(error_matrix.producersAccuracy().getInfo())
print('Kappa:', error_matrix.kappa().getInfo())
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-26 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-26 UTC."],[],["The `errorMatrix` method computes a 2D confusion matrix by comparing actual and predicted values from two columns within a FeatureCollection. It takes `actual` and `predicted` column names as inputs, and an optional `order` list to define the matrix's dimensions and included values. The function uses small contiguous integers starting from 0, and returns a `ConfusionMatrix` object that includes overall accuracy, consumer's accuracy, producer's accuracy and kappa.\n"]]