ee.FeatureCollection.iterate

Áp dụng một hàm do người dùng cung cấp cho từng phần tử của một bộ sưu tập. Hàm do người dùng cung cấp sẽ nhận được 2 đối số: phần tử hiện tại và giá trị do lệnh gọi trước đó đến iterate() hoặc đối số đầu tiên trả về, cho lần lặp đầu tiên. Kết quả là giá trị do lệnh gọi cuối cùng trả về cho hàm do người dùng cung cấp.

Trả về kết quả của lệnh gọi Collection.iterate().

Cách sử dụngGiá trị trả về
FeatureCollection.iterate(algorithm, first)ComputedObject
Đối sốLoạiThông tin chi tiết
this: collectionBộ sưu tậpPhiên bản Bộ sưu tập.
algorithmChức năngHàm để áp dụng cho từng phần tử. Phải có 2 đối số: một phần tử của tập hợp và giá trị từ lần lặp trước.
firstĐối tượng, không bắt buộcTrạng thái ban đầu.

Ví dụ

Trình soạn thảo mã (JavaScript)

/**
 * CAUTION: ee.FeatureCollection.iterate can be less efficient than alternative
 * solutions implemented using ee.FeatureCollection.map or by converting feature
 * properties to an ee.Array object and using ee.Array.slice and
 * ee.Array.arrayAccum methods. Avoid ee.FeatureCollection.iterate if possible.
 */

// Monthly precipitation accumulation for 2020.
var climate = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE')
                  .filterDate('2020-01-01', '2021-01-01')
                  .select('pr');

// Region of interest: north central New Mexico, USA.
var roi = ee.Geometry.BBox(-107.19, 35.27, -104.56, 36.83);

// A FeatureCollection of mean monthly precipitation accumulation for the
// region of interest.
var meanPrecipTs = climate.map(function(image) {
  var meanPrecip = image.reduceRegion(
      {reducer: ee.Reducer.mean(), geometry: roi, scale: 5000});
  return ee.Feature(roi, meanPrecip)
      .set('system:time_start', image.get('system:time_start'));
});

// A cumulative sum function to apply to each feature in the
// precipitation FeatureCollection. The first input is the current feature and
// the second is a list of features that accumulates at each step of the
// iteration. The function fetches the last feature in the feature list, gets
// the cumulative precipitation sum value from it, and adds it to the current
// feature's precipitation value. The new cumulative precipitation sum is set
// as a property of the current feature, which is appended to the feature list
// that is passed onto the next step of the iteration.
var cumsum = function(currentFeature, featureList) {
  featureList = ee.List(featureList);
  var previousSum = ee.Feature(featureList.get(-1)).getNumber('pr_cumsum');
  var currentVal = ee.Feature(currentFeature).getNumber('pr');
  var currentSum = previousSum.add(currentVal);
  return featureList.add(currentFeature.set('pr_cumsum', currentSum));
};

// Use "iterate" to cumulatively sum monthly precipitation over the year with
// the above defined "cumsum" function. Note that the feature list used in the
// "cumsum" function is initialized as the "first" variable. It includes a
// temporary feature with the "pr_cumsum" property set to 0; this feature is
// filtered out of the final FeatureCollection.
var first = ee.List([ee.Feature(null, {pr_cumsum: 0, first: true})]);
var precipCumSum =
    ee.FeatureCollection(ee.List(meanPrecipTs.iterate(cumsum, first)))
        .filter(ee.Filter.notNull(['pr']));

// Inspect the outputs.
print('Note cumulative precipitation ("pr_cumsum") property',
      precipCumSum);
print(ui.Chart.feature.byFeature(
      precipCumSum, 'system:time_start', ['pr', 'pr_cumsum']));

Thiết lập Python

Hãy xem trang Môi trường Python để biết thông tin về API Python và cách sử dụng geemap cho quá trình phát triển tương tác.

import ee
import geemap.core as geemap

Colab (Python)

import altair as alt

# CAUTION: ee.FeatureCollection.iterate can be less efficient than alternative
# solutions implemented using ee.FeatureCollection.map or by converting feature
# properties to an ee.Array object and using ee.Array.slice and
# ee.Array.arrayAccum methods. Avoid ee.FeatureCollection.iterate if possible.

# Monthly precipitation accumulation for 2020.
climate = (
    ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE')
    .filterDate('2020-01-01', '2021-01-01')
    .select('pr')
)

# Region of interest: north central New Mexico, USA.
roi = ee.Geometry.BBox(-107.19, 35.27, -104.56, 36.83)


# A FeatureCollection of mean monthly precipitation accumulation for the
# region of interest.
def mean_precip_ts_fun(image):
  mean_precip = image.reduceRegion(
      reducer=ee.Reducer.mean(), geometry=roi, scale=5000
  )
  return ee.Feature(roi, mean_precip).set(
      'system:time_start', image.get('system:time_start')
  )


mean_precip_ts = climate.map(mean_precip_ts_fun)


# A cumulative sum function to apply to each feature in the
# precipitation FeatureCollection. The first input is the current feature and
# the second is a list of features that accumulates at each step of the
# iteration. The function fetches the last feature in the feature list, gets
# the cumulative precipitation sum value from it, and adds it to the current
# feature's precipitation value. The new cumulative precipitation sum is set
# as a property of the current feature, which is appended to the feature list
# that is passed onto the next step of the iteration.
def cumsum(current_feature, feature_list):
  feature_list = ee.List(feature_list)
  previous_sum = ee.Feature(feature_list.get(-1)).getNumber('pr_cumsum')
  current_val = ee.Feature(current_feature).getNumber('pr')
  current_sum = previous_sum.add(current_val)
  return feature_list.add(current_feature.set('pr_cumsum', current_sum))


# Use "iterate" to cumulatively sum monthly precipitation over the year with
# the above defined "cumsum" function. Note that the feature list used in the
# "cumsum" function is initialized as the "first" variable. It includes a
# temporary feature with the "pr_cumsum" property set to 0 this feature is
# filtered out of the final FeatureCollection.
first = ee.List([ee.Feature(None, {'pr_cumsum': 0, 'first': True})])
precip_cum_sum = ee.FeatureCollection(
    ee.List(mean_precip_ts.iterate(cumsum, first))
).filter(ee.Filter.notNull(['pr']))

precip_cum_sum = precip_cum_sum.map(
    lambda feature: feature.set(
        'date',
        ee.Date(feature.getNumber('system:time_start')).format('YYYY-MM-dd'),
    )
)

# Inspect the outputs.
display('Note cumulative precipitation ("pr_cumsum") property', precip_cum_sum)

df = geemap.ee_to_df(precip_cum_sum, ['date', 'pr', 'pr_cumsum'])
display(df)

chart = (
    alt.Chart(df)
    .mark_line()
    .encode(x='date:T', y='pr:Q', color=alt.value('blue'))
)
chart += (
    alt.Chart(df)
    .mark_line()
    .encode(x='date:T', y='pr_cumsum:Q', color=alt.value('red'))
)
chart