ee.Geometry.LinearRing.buffer
Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
Zwraca dane wejściowe buforowane o określoną odległość. Jeśli odległość jest dodatnia, geometria jest powiększana, a jeśli jest ujemna – zmniejszana.
Wykorzystanie | Zwroty |
---|
LinearRing.buffer(distance, maxError, proj) | Geometria |
Argument | Typ | Szczegóły |
---|
to: geometry | Geometria | Buforowana geometria. |
distance | Liczba zmiennoprzecinkowa | Odległość buforowania, która może być ujemna. Jeśli nie określono projekcji, jednostką są metry. W przeciwnym razie jednostka jest w układzie współrzędnych projekcji. |
maxError | ErrorMargin, domyślnie: null | Maksymalna dopuszczalna wartość błędu podczas przybliżania okręgu buforowania i wykonywania niezbędnych przekształceń. Jeśli nie podasz tu żadnej wartości, zostanie użyta wartość domyślna 1% odległości. |
proj | Prognoza, domyślnie: null | Jeśli zostanie określona, buforowanie będzie wykonywane w tej projekcji, a odległość będzie interpretowana jako jednostki układu współrzędnych tej projekcji. W przeciwnym razie odległość jest interpretowana jako metry, a buforowanie jest wykonywane w sferycznym układzie współrzędnych. |
Przykłady
Edytor kodu (JavaScript)
// Define a LinearRing object.
var linearRing = ee.Geometry.LinearRing(
[[-122.091, 37.420],
[-122.085, 37.422],
[-122.080, 37.430]]);
// Apply the buffer method to the LinearRing object.
var linearRingBuffer = linearRing.buffer({'distance': 100});
// Print the result to the console.
print('linearRing.buffer(...) =', linearRingBuffer);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(linearRing,
{'color': 'black'},
'Geometry [black]: linearRing');
Map.addLayer(linearRingBuffer,
{'color': 'red'},
'Result [red]: linearRing.buffer');
Konfiguracja Pythona
Informacje o interfejsie Python API i używaniu geemap
do interaktywnego programowania znajdziesz na stronie
Środowisko Python.
import ee
import geemap.core as geemap
Colab (Python)
# Define a LinearRing object.
linearring = ee.Geometry.LinearRing(
[[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]
)
# Apply the buffer method to the LinearRing object.
linearring_buffer = linearring.buffer(distance=100)
# Print the result.
display('linearring.buffer(...) =', linearring_buffer)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')
m.add_layer(
linearring_buffer, {'color': 'red'}, 'Result [red]: linearring.buffer'
)
m
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-26 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-26 UTC."],[[["\u003cp\u003eReturns a Geometry representing the input LinearRing expanded or contracted by a specified distance.\u003c/p\u003e\n"],["\u003cp\u003eA positive distance expands the geometry while a negative distance contracts it.\u003c/p\u003e\n"],["\u003cp\u003eThe buffering can be performed using meters or a specified projection's units.\u003c/p\u003e\n"],["\u003cp\u003eAn optional error margin controls the accuracy of the buffer approximation.\u003c/p\u003e\n"]]],["The `buffer` method expands or contracts a geometry by a specified distance. The `distance` parameter determines the buffer's size; positive values expand, while negative values contract. `maxError` sets the tolerance for approximation and reprojection errors, defaulting to 1% of the distance. An optional `proj` parameter defines the coordinate system, otherwise, distance is measured in meters using a spherical system. The method takes a geometry, floats for `distance` and `maxError` and a `projection` for the `proj` parameter. The result is a new `geometry`.\n"],null,["# ee.Geometry.LinearRing.buffer\n\nReturns the input buffered by a given distance. If the distance is positive, the geometry is expanded, and if the distance is negative, the geometry is contracted.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------|----------|\n| LinearRing.buffer`(distance, `*maxError* `, `*proj*`)` | Geometry |\n\n| Argument | Type | Details |\n|------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `geometry` | Geometry | The geometry being buffered. |\n| `distance` | Float | The distance of the buffering, which may be negative. If no projection is specified, the unit is meters. Otherwise the unit is in the coordinate system of the projection. |\n| `maxError` | ErrorMargin, default: null | The maximum amount of error tolerated when approximating the buffering circle and performing any necessary reprojection. If unspecified, defaults to 1% of the distance. |\n| `proj` | Projection, default: null | If specified, the buffering will be performed in this projection and the distance will be interpreted as units of the coordinate system of this projection. Otherwise the distance is interpereted as meters and the buffering is performed in a spherical coordinate system. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a LinearRing object.\nvar linearRing = ee.Geometry.LinearRing(\n [[-122.091, 37.420],\n [-122.085, 37.422],\n [-122.080, 37.430]]);\n\n// Apply the buffer method to the LinearRing object.\nvar linearRingBuffer = linearRing.buffer({'distance': 100});\n\n// Print the result to the console.\nprint('linearRing.buffer(...) =', linearRingBuffer);\n\n// Display relevant geometries on the map.\nMap.setCenter(-122.085, 37.422, 15);\nMap.addLayer(linearRing,\n {'color': 'black'},\n 'Geometry [black]: linearRing');\nMap.addLayer(linearRingBuffer,\n {'color': 'red'},\n 'Result [red]: linearRing.buffer');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a LinearRing object.\nlinearring = ee.Geometry.LinearRing(\n [[-122.091, 37.420], [-122.085, 37.422], [-122.080, 37.430]]\n)\n\n# Apply the buffer method to the LinearRing object.\nlinearring_buffer = linearring.buffer(distance=100)\n\n# Print the result.\ndisplay('linearring.buffer(...) =', linearring_buffer)\n\n# Display relevant geometries on the map.\nm = geemap.Map()\nm.set_center(-122.085, 37.422, 15)\nm.add_layer(linearring, {'color': 'black'}, 'Geometry [black]: linearring')\nm.add_layer(\n linearring_buffer, {'color': 'red'}, 'Result [red]: linearring.buffer'\n)\nm\n```"]]