Wprowadzamy w Earth Engine
poziomy limitów niekomercyjnych, aby chronić współdzielone zasoby obliczeniowe i zapewnić niezawodną wydajność dla wszystkich. We wszystkich projektach niekomercyjnych trzeba będzie wybrać poziom limitu do
27 kwietnia 2026 r.. W przeciwnym razie zostanie im przydzielony poziom Społeczność. Limity poziomu zaczną obowiązywać we wszystkich projektach (niezależnie od daty wyboru poziomu) od
27 kwietnia 2026 r. Więcej informacji
ee.Image.arrayFlatten
Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
Konwertuje obraz jednopasmowy z wielowymiarowymi pikselami o jednakowym kształcie na obraz z pikselami skalarnymi, z jednym pasmem dla każdego elementu tablicy.
| Wykorzystanie | Zwroty |
|---|
Image.arrayFlatten(coordinateLabels, separator) | Obraz |
| Argument | Typ | Szczegóły |
|---|
to: image | Obraz | Obraz wielowymiarowych pikseli do spłaszczenia. |
coordinateLabels | Lista | Nazwa każdej pozycji na każdej osi. Na przykład tablice 2x2 z osiami „dzień” i „kolor” mogą mieć etykiety [[„poniedziałek”, „wtorek”], [„czerwony”, „zielony”]], co daje nazwy pasm „poniedziałek_czerwony”, „poniedziałek_zielony”, „wtorek_czerwony” i „wtorek_zielony”. |
separator | Ciąg znaków, domyślnie: „_” | Separator między etykietami tablic w nazwie każdego pasma. |
Przykłady
Edytor kodu (JavaScript)
// A function to print arrays for a selected pixel in the following examples.
function sampArrImg(arrImg) {
var point = ee.Geometry.Point([-121, 42]);
return arrImg.sample(point, 500).first().get('array');
}
// A 1D array image.
var arrayImg1D = ee.Image([0, 1, 2]).toArray();
print('1D array image (pixel)', sampArrImg(arrayImg1D));
// [0, 1, 2]
// Define image band names for a 1D array image with 3 rows. You are labeling
// all rows and columns using a list of lists; the 1st sub list defines labels
// for array rows and the 2nd (if applicable) defines labels for array columns.
var bandNames1D = [['row0', 'row1', 'row2']];
// Flatten the 1D array image into an image with n bands equal to all
// combinations of rows and columns. Here, we have 3 rows and 0 columns,
// so the result will be a 3-band image.
var imgFrom1Darray = arrayImg1D.arrayFlatten(bandNames1D);
print('Image from 1D array', imgFrom1Darray);
// Make a 2D array image by repeating the 1D array on 2-axis.
var arrayImg2D = arrayImg1D.arrayRepeat(1, 2);
print('2D array image (pixel)', sampArrImg(arrayImg2D));
// [[0, 0],
// [1, 1],
// [2, 2]]
// Define image band names for a 2D array image with 3 rows and 2 columns.
// Recall that you are labeling all rows and columns using a list of lists;
// The 1st sub list defines labels for array rows and the 2nd (if applicable)
// defines labels for array columns.
var bandNames2D = [['row0', 'row1', 'row2'], ['col0', 'col1']];
// Flatten the 2D array image into an image with n bands equal to all
// combinations of rows and columns. Here, we have 3 rows and 2 columns,
// so the result will be a 6-band image.
var imgFrom2Darray = arrayImg2D.arrayFlatten(bandNames2D);
print('Image from 2D array', imgFrom2Darray);
Konfiguracja Pythona
Informacje o interfejsie Python API i używaniu geemap do interaktywnego programowania znajdziesz na stronie
Środowisko Python.
import ee
import geemap.core as geemap
Colab (Python)
# A function to print arrays for a selected pixel in the following examples.
def samp_arr_img(arr_img):
point = ee.Geometry.Point([-121, 42])
return arr_img.sample(point, 500).first().get('array')
# A 1D array image.
array_img_1d = ee.Image([0, 1, 2]).toArray()
display('1D array image (pixel):', samp_arr_img(array_img_1d))
# [0, 1, 2]
# Define image band names for a 1D array image with 3 rows. You are labeling
# all rows and columns using a list of lists; the 1st sub list defines labels
# for array rows and the 2nd (if applicable) defines labels for array columns.
band_names_1d = [['row0', 'row1', 'row2']]
# Flatten the 1D array image into an image with n bands equal to all
# combinations of rows and columns. Here, we have 3 rows and 0 columns,
# so the result will be a 3-band image.
img_from_1d_array = array_img_1d.arrayFlatten(band_names_1d)
display('Image from 1D array:', img_from_1d_array)
# Make a 2D array image by repeating the 1D array on 2-axis.
array_img_2d = array_img_1d.arrayRepeat(1, 2)
display('2D array image (pixel):', samp_arr_img(array_img_2d))
# [[0, 0],
# [1, 1],
# [2, 2]]
# Define image band names for a 2D array image with 3 rows and 2 columns.
# Recall that you are labeling all rows and columns using a list of lists;
# The 1st sub list defines labels for array rows and the 2nd (if applicable)
# defines labels for array columns.
band_names_2d = [['row0', 'row1', 'row2'], ['col0', 'col1']]
# Flatten the 2D array image into an image with n bands equal to all
# combinations of rows and columns. Here, we have 3 rows and 2 columns,
# so the result will be a 6-band image.
img_from_2d_array = array_img_2d.arrayFlatten(band_names_2d)
display('Image from 2D array:', img_from_2d_array)
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-10-30 UTC.
[null,null,["Ostatnia aktualizacja: 2025-10-30 UTC."],[],[]]