お知らせ:
2025 年 4 月 15 日より前に Earth Engine の使用を登録したすべての非商用プロジェクトは、Earth Engine へのアクセスを維持するために
非商用目的での利用資格を確認する必要があります。
ee.Image.reduceRegions
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
指定されたコレクション内の各対象物のエリアにリデューサーを適用します。
レジューサーの入力数は、入力画像のバンドの数と同じにする必要があります。
各入力特徴が対応するレジューサー出力で拡張された入力特徴を返します。
用途 | 戻り値 |
---|
Image.reduceRegions(collection, reducer, scale, crs, crsTransform, tileScale, maxPixelsPerRegion) | FeatureCollection |
引数 | タイプ | 詳細 |
---|
this: image | 画像 | 縮小する画像。 |
collection | FeatureCollection | 減らす特徴量。 |
reducer | レデューサ | 適用するレデューサ。 |
scale | 浮動小数点数、デフォルト: null | 作業する投影の公称スケール(メートル単位)。 |
crs | 投影、デフォルト: null | 使用する投影。指定しない場合、画像の最初のバンドのプロジェクションが使用されます。スケールに加えて指定した場合は、指定されたスケールに再スケーリングされます。 |
crsTransform | リスト、デフォルト: null | CRS 変換値のリスト。これは、3x2 変換行列の行優先の順序です。このオプションは「scale」と相互に排他的であり、投影にすでに設定されている変換を置き換えます。 |
tileScale | 浮動小数点数、デフォルト: 1 | 集計タイルサイズを小さくするために使用されるスケーリング ファクタ。大きな tileScale(2 または 4)では、デフォルトではメモリ不足になる計算が有効になる可能性があります。 |
maxPixelsPerRegion | Long、デフォルト: null | リージョンあたり削減するピクセルの最大数。 |
例
コードエディタ(JavaScript)
// A Landsat 8 SR image with SWIR1, NIR, and green bands.
var img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')
.select(['SR_B6', 'SR_B5', 'SR_B3']);
// Santa Cruz Mountains ecoregions feature collection.
var regionCol = ee.FeatureCollection('EPA/Ecoregions/2013/L4')
.filter('us_l4name == "Santa Cruz Mountains" || ' +
'us_l4name == "San Mateo Coastal Hills" || ' +
'us_l4name == "Leeward Hills"');
// Display layers on the map.
Map.setCenter(-122.08, 37.22, 9);
Map.addLayer(img, {min: 10000, max: 20000}, 'Landsat image');
Map.addLayer(regionCol, {color: 'white'}, 'Santa Cruz Mountains ecoregions');
// Calculate median band values within Santa Cruz Mountains ecoregions. It is
// good practice to explicitly define "scale" (or "crsTransform") and "crs"
// parameters of the analysis to avoid unexpected results from undesired
// defaults when e.g. reducing a composite image.
var stats = img.reduceRegions({
collection: regionCol,
reducer: ee.Reducer.median(),
scale: 30, // meters
crs: 'EPSG:3310', // California Albers projection
});
// The input feature collection is returned with new properties appended.
// The new properties are the outcome of the region reduction per image band,
// for each feature in the collection. Region reduction property names
// are the same as the input image band names.
print('Median band values, Santa Cruz Mountains ecoregions', stats);
// You can combine reducers to calculate e.g. mean and standard deviation
// simultaneously. The resulting property names are the concatenation of the
// band names and statistic names, separated by an underscore.
var reducer = ee.Reducer.mean().combine({
reducer2: ee.Reducer.stdDev(),
sharedInputs: true
});
var multiStats = img.reduceRegions({
collection: regionCol,
reducer: reducer,
scale: 30,
crs: 'EPSG:3310',
});
print('Mean & SD band values, Santa Cruz Mountains ecoregions', multiStats);
Python の設定
Python API とインタラクティブな開発での geemap
の使用については、
Python 環境のページをご覧ください。
import ee
import geemap.core as geemap
Colab(Python)
# A Landsat 8 SR image with SWIR1, NIR, and green bands.
img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508').select(
['SR_B6', 'SR_B5', 'SR_B3']
)
# Santa Cruz Mountains ecoregions feature collection.
region_col = ee.FeatureCollection('EPA/Ecoregions/2013/L4').filter(
'us_l4name == "Santa Cruz Mountains" || '
+ 'us_l4name == "San Mateo Coastal Hills" || '
+ 'us_l4name == "Leeward Hills"'
)
# Display layers on the map.
m = geemap.Map()
m.set_center(-122.08, 37.22, 9)
m.add_layer(img, {'min': 10000, 'max': 20000}, 'Landsat image')
m.add_layer(
region_col, {'color': 'white'}, 'Santa Cruz Mountains ecoregions'
)
display(m)
# Calculate median band values within Santa Cruz Mountains ecoregions. It is
# good practice to explicitly define "scale" (or "crsTransform") and "crs"
# parameters of the analysis to avoid unexpected results from undesired
# defaults when e.g. reducing a composite image.
stats = img.reduceRegions(
collection=region_col,
reducer=ee.Reducer.median(),
scale=30, # meters
crs='EPSG:3310', # California Albers projection
)
# The input feature collection is returned with new properties appended.
# The new properties are the outcome of the region reduction per image band,
# for each feature in the collection. Region reduction property names
# are the same as the input image band names.
display('Median band values, Santa Cruz Mountains ecoregions', stats)
# You can combine reducers to calculate e.g. mean and standard deviation
# simultaneously. The resulting property names are the concatenation of the
# band names and statistic names, separated by an underscore.
reducer = ee.Reducer.mean().combine(
reducer2=ee.Reducer.stdDev(), sharedInputs=True
)
multi_stats = img.reduceRegions(
collection=region_col,
reducer=reducer,
scale=30,
crs='EPSG:3310',
)
display('Mean & SD band values, Santa Cruz Mountains ecoregions', multi_stats)
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-25 UTC。
[null,null,["最終更新日 2025-07-25 UTC。"],[[["\u003cp\u003e\u003ccode\u003eImage.reduceRegions\u003c/code\u003e applies a reducer function to an image within the boundaries of each feature in a feature collection.\u003c/p\u003e\n"],["\u003cp\u003eThe reducer output is added as new properties to the input features, with property names corresponding to the image band names.\u003c/p\u003e\n"],["\u003cp\u003eUsers can specify the scale, projection (CRS), and tile scaling for the reduction operation to ensure accurate and efficient processing.\u003c/p\u003e\n"],["\u003cp\u003eMultiple reducers can be combined to calculate different statistics simultaneously, resulting in property names that reflect both the band and the statistic.\u003c/p\u003e\n"]]],[],null,["# ee.Image.reduceRegions\n\nApply a reducer over the area of each feature in the given collection.\n\n\u003cbr /\u003e\n\nThe reducer must have the same number of inputs as the input image has bands.\n\nReturns the input features, each augmented with the corresponding reducer outputs.\n\n| Usage | Returns |\n|-----------------------------------------------------------------------------------------------------------------------------|-------------------|\n| Image.reduceRegions`(collection, reducer, `*scale* `, `*crs* `, `*crsTransform* `, `*tileScale* `, `*maxPixelsPerRegion*`)` | FeatureCollection |\n\n| Argument | Type | Details |\n|----------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| this: `image` | Image | The image to reduce. |\n| `collection` | FeatureCollection | The features to reduce over. |\n| `reducer` | Reducer | The reducer to apply. |\n| `scale` | Float, default: null | A nominal scale in meters of the projection to work in. |\n| `crs` | Projection, default: null | The projection to work in. If unspecified, the projection of the image's first band is used. If specified in addition to scale, rescaled to the specified scale. |\n| `crsTransform` | List, default: null | The list of CRS transform values. This is a row-major ordering of the 3x2 transform matrix. This option is mutually exclusive with 'scale', and will replace any transform already set on the projection. |\n| `tileScale` | Float, default: 1 | A scaling factor used to reduce aggregation tile size; using a larger tileScale (e.g., 2 or 4) may enable computations that run out of memory with the default. |\n| `maxPixelsPerRegion` | Long, default: null | The maximum number of pixels to reduce per region. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Landsat 8 SR image with SWIR1, NIR, and green bands.\nvar img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')\n .select(['SR_B6', 'SR_B5', 'SR_B3']);\n\n// Santa Cruz Mountains ecoregions feature collection.\nvar regionCol = ee.FeatureCollection('EPA/Ecoregions/2013/L4')\n .filter('us_l4name == \"Santa Cruz Mountains\" || ' +\n 'us_l4name == \"San Mateo Coastal Hills\" || ' +\n 'us_l4name == \"Leeward Hills\"');\n\n// Display layers on the map.\nMap.setCenter(-122.08, 37.22, 9);\nMap.addLayer(img, {min: 10000, max: 20000}, 'Landsat image');\nMap.addLayer(regionCol, {color: 'white'}, 'Santa Cruz Mountains ecoregions');\n\n// Calculate median band values within Santa Cruz Mountains ecoregions. It is\n// good practice to explicitly define \"scale\" (or \"crsTransform\") and \"crs\"\n// parameters of the analysis to avoid unexpected results from undesired\n// defaults when e.g. reducing a composite image.\nvar stats = img.reduceRegions({\n collection: regionCol,\n reducer: ee.Reducer.median(),\n scale: 30, // meters\n crs: 'EPSG:3310', // California Albers projection\n});\n\n// The input feature collection is returned with new properties appended.\n// The new properties are the outcome of the region reduction per image band,\n// for each feature in the collection. Region reduction property names\n// are the same as the input image band names.\nprint('Median band values, Santa Cruz Mountains ecoregions', stats);\n\n// You can combine reducers to calculate e.g. mean and standard deviation\n// simultaneously. The resulting property names are the concatenation of the\n// band names and statistic names, separated by an underscore.\nvar reducer = ee.Reducer.mean().combine({\n reducer2: ee.Reducer.stdDev(),\n sharedInputs: true\n});\nvar multiStats = img.reduceRegions({\n collection: regionCol,\n reducer: reducer,\n scale: 30,\n crs: 'EPSG:3310',\n});\nprint('Mean & SD band values, Santa Cruz Mountains ecoregions', multiStats);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Landsat 8 SR image with SWIR1, NIR, and green bands.\nimg = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508').select(\n ['SR_B6', 'SR_B5', 'SR_B3']\n)\n\n# Santa Cruz Mountains ecoregions feature collection.\nregion_col = ee.FeatureCollection('EPA/Ecoregions/2013/L4').filter(\n 'us_l4name == \"Santa Cruz Mountains\" || '\n + 'us_l4name == \"San Mateo Coastal Hills\" || '\n + 'us_l4name == \"Leeward Hills\"'\n)\n\n# Display layers on the map.\nm = geemap.Map()\nm.set_center(-122.08, 37.22, 9)\nm.add_layer(img, {'min': 10000, 'max': 20000}, 'Landsat image')\nm.add_layer(\n region_col, {'color': 'white'}, 'Santa Cruz Mountains ecoregions'\n)\ndisplay(m)\n\n# Calculate median band values within Santa Cruz Mountains ecoregions. It is\n# good practice to explicitly define \"scale\" (or \"crsTransform\") and \"crs\"\n# parameters of the analysis to avoid unexpected results from undesired\n# defaults when e.g. reducing a composite image.\nstats = img.reduceRegions(\n collection=region_col,\n reducer=ee.Reducer.median(),\n scale=30, # meters\n crs='EPSG:3310', # California Albers projection\n)\n\n# The input feature collection is returned with new properties appended.\n# The new properties are the outcome of the region reduction per image band,\n# for each feature in the collection. Region reduction property names\n# are the same as the input image band names.\ndisplay('Median band values, Santa Cruz Mountains ecoregions', stats)\n\n# You can combine reducers to calculate e.g. mean and standard deviation\n# simultaneously. The resulting property names are the concatenation of the\n# band names and statistic names, separated by an underscore.\nreducer = ee.Reducer.mean().combine(\n reducer2=ee.Reducer.stdDev(), sharedInputs=True\n)\nmulti_stats = img.reduceRegions(\n collection=region_col,\n reducer=reducer,\n scale=30,\n crs='EPSG:3310',\n)\ndisplay('Mean & SD band values, Santa Cruz Mountains ecoregions', multi_stats)\n```"]]