お知らせ:
2025 年 4 月 15 日より前に Earth Engine の使用を登録したすべての非商用プロジェクトは、Earth Engine へのアクセスを維持するために
非商用目的での利用資格を確認する必要があります。
ee.ImageCollection.count
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
一致するすべてのバンドのスタック全体で、各ピクセルで有効なマスクを持つ画像の数を計算して、画像コレクションを削減します。バンドは名前で照合されます。
用途 | 戻り値 |
---|
ImageCollection.count() | 画像 |
引数 | タイプ | 詳細 |
---|
これ: collection | ImageCollection | 縮小する画像コレクション。 |
例
コードエディタ(JavaScript)
// Sentinel-2 image collection for July 2021 intersecting a point of interest.
// Reflectance, cloud probability, and scene classification bands are selected.
var col = ee.ImageCollection('COPERNICUS/S2_SR')
.filterDate('2021-07-01', '2021-08-01')
.filterBounds(ee.Geometry.Point(-122.373, 37.448))
.select('B.*|MSK_CLDPRB|SCL');
// Visualization parameters for reflectance RGB.
var visRefl = {
bands: ['B11', 'B8', 'B3'],
min: 0,
max: 4000
};
Map.setCenter(-122.373, 37.448, 9);
Map.addLayer(col, visRefl, 'Collection reference', false);
// Reduce the collection to a single image using a variety of methods.
var mean = col.mean();
Map.addLayer(mean, visRefl, 'Mean (B11, B8, B3)');
var median = col.median();
Map.addLayer(median, visRefl, 'Median (B11, B8, B3)');
var min = col.min();
Map.addLayer(min, visRefl, 'Min (B11, B8, B3)');
var max = col.max();
Map.addLayer(max, visRefl, 'Max (B11, B8, B3)');
var sum = col.sum();
Map.addLayer(sum,
{bands: ['MSK_CLDPRB'], min: 0, max: 500}, 'Sum (MSK_CLDPRB)');
var product = col.product();
Map.addLayer(product,
{bands: ['MSK_CLDPRB'], min: 0, max: 1e10}, 'Product (MSK_CLDPRB)');
// ee.ImageCollection.mode returns the most common value. If multiple mode
// values occur, the minimum mode value is returned.
var mode = col.mode();
Map.addLayer(mode, {bands: ['SCL'], min: 1, max: 11}, 'Mode (pixel class)');
// ee.ImageCollection.count returns the frequency of valid observations. Here,
// image pixels are masked based on cloud probability to add valid observation
// variability to the collection. Note that pixels with no valid observations
// are masked out of the returned image.
var notCloudCol = col.map(function(img) {
return img.updateMask(img.select('MSK_CLDPRB').lte(10));
});
var count = notCloudCol.count();
Map.addLayer(count, {min: 1, max: 5}, 'Count (not cloud observations)');
// ee.ImageCollection.mosaic composites images according to their position in
// the collection (priority is last to first) and pixel mask status, where
// invalid (mask value 0) pixels are filled by preceding valid (mask value >0)
// pixels.
var mosaic = notCloudCol.mosaic();
Map.addLayer(mosaic, visRefl, 'Mosaic (B11, B8, B3)');
Python の設定
Python API とインタラクティブな開発での geemap
の使用については、
Python 環境のページをご覧ください。
import ee
import geemap.core as geemap
Colab(Python)
# Sentinel-2 image collection for July 2021 intersecting a point of interest.
# Reflectance, cloud probability, and scene classification bands are selected.
col = (
ee.ImageCollection('COPERNICUS/S2_SR')
.filterDate('2021-07-01', '2021-08-01')
.filterBounds(ee.Geometry.Point(-122.373, 37.448))
.select('B.*|MSK_CLDPRB|SCL')
)
# Visualization parameters for reflectance RGB.
vis_refl = {'bands': ['B11', 'B8', 'B3'], 'min': 0, 'max': 4000}
m = geemap.Map()
m.set_center(-122.373, 37.448, 9)
m.add_layer(col, vis_refl, 'Collection reference', False)
# Reduce the collection to a single image using a variety of methods.
mean = col.mean()
m.add_layer(mean, vis_refl, 'Mean (B11, B8, B3)')
median = col.median()
m.add_layer(median, vis_refl, 'Median (B11, B8, B3)')
min = col.min()
m.add_layer(min, vis_refl, 'Min (B11, B8, B3)')
max = col.max()
m.add_layer(max, vis_refl, 'Max (B11, B8, B3)')
sum = col.sum()
m.add_layer(
sum, {'bands': ['MSK_CLDPRB'], 'min': 0, 'max': 500}, 'Sum (MSK_CLDPRB)'
)
product = col.product()
m.add_layer(
product,
{'bands': ['MSK_CLDPRB'], 'min': 0, 'max': 1e10},
'Product (MSK_CLDPRB)',
)
# ee.ImageCollection.mode returns the most common value. If multiple mode
# values occur, the minimum mode value is returned.
mode = col.mode()
m.add_layer(
mode, {'bands': ['SCL'], 'min': 1, 'max': 11}, 'Mode (pixel class)'
)
# ee.ImageCollection.count returns the frequency of valid observations. Here,
# image pixels are masked based on cloud probability to add valid observation
# variability to the collection. Note that pixels with no valid observations
# are masked out of the returned image.
not_cloud_col = col.map(
lambda img: img.updateMask(img.select('MSK_CLDPRB').lte(10))
)
count = not_cloud_col.count()
m.add_layer(count, {'min': 1, 'max': 5}, 'Count (not cloud observations)')
# ee.ImageCollection.mosaic composites images according to their position in
# the collection (priority is last to first) and pixel mask status, where
# invalid (mask value 0) pixels are filled by preceding valid (mask value >0)
# pixels.
mosaic = not_cloud_col.mosaic()
m.add_layer(mosaic, vis_refl, 'Mosaic (B11, B8, B3)')
m
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
[null,null,["最終更新日 2025-07-26 UTC。"],[[["\u003cp\u003e\u003ccode\u003eImageCollection.count()\u003c/code\u003e reduces an image collection by calculating the number of images with valid data at each pixel location.\u003c/p\u003e\n"],["\u003cp\u003eBands with the same name are matched across images within the collection for the calculation.\u003c/p\u003e\n"],["\u003cp\u003ePixels with no valid observations are masked out in the resulting image.\u003c/p\u003e\n"],["\u003cp\u003eThe output is a single image where pixel values represent the count of valid observations.\u003c/p\u003e\n"]]],["The `ImageCollection.count()` method reduces an image collection into a single image by counting the number of images with a valid mask at each pixel, across all matching bands. Bands are matched by name. It returns an image where each pixel's value represents the frequency of valid observations at that location. An example in the provided code uses this method to count cloud-free observations. The collection can be reduced by a variety of methods.\n"],null,["# ee.ImageCollection.count\n\nReduces an image collection by calculating the number of images with a valid mask at each pixel across the stack of all matching bands. Bands are matched by name.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------|---------|\n| ImageCollection.count`()` | Image |\n\n| Argument | Type | Details |\n|--------------------|-----------------|---------------------------------|\n| this: `collection` | ImageCollection | The image collection to reduce. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// Sentinel-2 image collection for July 2021 intersecting a point of interest.\n// Reflectance, cloud probability, and scene classification bands are selected.\nvar col = ee.ImageCollection('COPERNICUS/S2_SR')\n .filterDate('2021-07-01', '2021-08-01')\n .filterBounds(ee.Geometry.Point(-122.373, 37.448))\n .select('B.*|MSK_CLDPRB|SCL');\n\n// Visualization parameters for reflectance RGB.\nvar visRefl = {\n bands: ['B11', 'B8', 'B3'],\n min: 0,\n max: 4000\n};\nMap.setCenter(-122.373, 37.448, 9);\nMap.addLayer(col, visRefl, 'Collection reference', false);\n\n// Reduce the collection to a single image using a variety of methods.\nvar mean = col.mean();\nMap.addLayer(mean, visRefl, 'Mean (B11, B8, B3)');\n\nvar median = col.median();\nMap.addLayer(median, visRefl, 'Median (B11, B8, B3)');\n\nvar min = col.min();\nMap.addLayer(min, visRefl, 'Min (B11, B8, B3)');\n\nvar max = col.max();\nMap.addLayer(max, visRefl, 'Max (B11, B8, B3)');\n\nvar sum = col.sum();\nMap.addLayer(sum,\n {bands: ['MSK_CLDPRB'], min: 0, max: 500}, 'Sum (MSK_CLDPRB)');\n\nvar product = col.product();\nMap.addLayer(product,\n {bands: ['MSK_CLDPRB'], min: 0, max: 1e10}, 'Product (MSK_CLDPRB)');\n\n// ee.ImageCollection.mode returns the most common value. If multiple mode\n// values occur, the minimum mode value is returned.\nvar mode = col.mode();\nMap.addLayer(mode, {bands: ['SCL'], min: 1, max: 11}, 'Mode (pixel class)');\n\n// ee.ImageCollection.count returns the frequency of valid observations. Here,\n// image pixels are masked based on cloud probability to add valid observation\n// variability to the collection. Note that pixels with no valid observations\n// are masked out of the returned image.\nvar notCloudCol = col.map(function(img) {\n return img.updateMask(img.select('MSK_CLDPRB').lte(10));\n});\nvar count = notCloudCol.count();\nMap.addLayer(count, {min: 1, max: 5}, 'Count (not cloud observations)');\n\n// ee.ImageCollection.mosaic composites images according to their position in\n// the collection (priority is last to first) and pixel mask status, where\n// invalid (mask value 0) pixels are filled by preceding valid (mask value \u003e0)\n// pixels.\nvar mosaic = notCloudCol.mosaic();\nMap.addLayer(mosaic, visRefl, 'Mosaic (B11, B8, B3)');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Sentinel-2 image collection for July 2021 intersecting a point of interest.\n# Reflectance, cloud probability, and scene classification bands are selected.\ncol = (\n ee.ImageCollection('COPERNICUS/S2_SR')\n .filterDate('2021-07-01', '2021-08-01')\n .filterBounds(ee.Geometry.Point(-122.373, 37.448))\n .select('B.*|MSK_CLDPRB|SCL')\n)\n\n# Visualization parameters for reflectance RGB.\nvis_refl = {'bands': ['B11', 'B8', 'B3'], 'min': 0, 'max': 4000}\nm = geemap.Map()\nm.set_center(-122.373, 37.448, 9)\nm.add_layer(col, vis_refl, 'Collection reference', False)\n\n# Reduce the collection to a single image using a variety of methods.\nmean = col.mean()\nm.add_layer(mean, vis_refl, 'Mean (B11, B8, B3)')\n\nmedian = col.median()\nm.add_layer(median, vis_refl, 'Median (B11, B8, B3)')\n\nmin = col.min()\nm.add_layer(min, vis_refl, 'Min (B11, B8, B3)')\n\nmax = col.max()\nm.add_layer(max, vis_refl, 'Max (B11, B8, B3)')\n\nsum = col.sum()\nm.add_layer(\n sum, {'bands': ['MSK_CLDPRB'], 'min': 0, 'max': 500}, 'Sum (MSK_CLDPRB)'\n)\n\nproduct = col.product()\nm.add_layer(\n product,\n {'bands': ['MSK_CLDPRB'], 'min': 0, 'max': 1e10},\n 'Product (MSK_CLDPRB)',\n)\n\n# ee.ImageCollection.mode returns the most common value. If multiple mode\n# values occur, the minimum mode value is returned.\nmode = col.mode()\nm.add_layer(\n mode, {'bands': ['SCL'], 'min': 1, 'max': 11}, 'Mode (pixel class)'\n)\n\n# ee.ImageCollection.count returns the frequency of valid observations. Here,\n# image pixels are masked based on cloud probability to add valid observation\n# variability to the collection. Note that pixels with no valid observations\n# are masked out of the returned image.\nnot_cloud_col = col.map(\n lambda img: img.updateMask(img.select('MSK_CLDPRB').lte(10))\n)\ncount = not_cloud_col.count()\nm.add_layer(count, {'min': 1, 'max': 5}, 'Count (not cloud observations)')\n\n# ee.ImageCollection.mosaic composites images according to their position in\n# the collection (priority is last to first) and pixel mask status, where\n# invalid (mask value 0) pixels are filled by preceding valid (mask value \u003e0)\n# pixels.\nmosaic = not_cloud_col.mosaic()\nm.add_layer(mosaic, vis_refl, 'Mosaic (B11, B8, B3)')\nm\n```"]]