ee.Kernel.euclidean

Generuje jądro odległości na podstawie odległości euklidesowej (w linii prostej).

WykorzystanieZwroty
ee.Kernel.euclidean(radius, units, normalize, magnitude)Jądro
ArgumentTypSzczegóły
radiusLiczba zmiennoprzecinkowaPromień jądra do wygenerowania.
unitsCiąg znaków, domyślnie: „pixels”System miar dla jądra („piksele” lub „metry”). Jeśli jądro jest określone w metrach, zmieni rozmiar po zmianie poziomu powiększenia.
normalizeWartość logiczna, domyślnie: falseZnormalizuj wartości jądra tak, aby ich suma wynosiła 1.
magnitudeLiczba zmiennoprzecinkowa, domyślnie: 1Skaluj każdą wartość o tę kwotę.

Przykłady

Edytor kodu (JavaScript)

print('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));

/**
 * Output weights matrix (up to 1/1000 precision for brevity)
 *
 * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
 * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
 * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
 * [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
 * [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
 * [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
 * [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
 */

Konfiguracja Pythona

Informacje o interfejsie Python API i używaniu geemap do interaktywnego programowania znajdziesz na stronie Środowisko Python.

import ee
import geemap.core as geemap

Colab (Python)

from pprint import pprint

print('A Euclidean distance kernel:')
pprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())

#  Output weights matrix (up to 1/1000 precision for brevity)

#  [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
#  [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
#  [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
#  [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
#  [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
#  [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
#  [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]