Algorytmy Sentinel-1
Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
Sentinel-1 to misja kosmiczna finansowana przez Unię Europejską i realizowana przez Europejską Agencję Kosmiczną (ESA) w ramach programu Copernicus. Sentinel-1 zbiera obrazy z radaru z syntetyczną przysłoną (SAR) w paśmie C w różnych polaryzacjach i rozdzielczościach. Ponieważ dane radarowe wymagają kilku specjalistycznych algorytmów do uzyskania skanów ortorektyfikowanych, w tym dokumencie opisano wstępną obróbkę danych Sentinel-1 w Earth Engine.
Dane Sentinel-1 są zbierane przy użyciu różnych konfiguracji instrumentu, rozdzielczości i kombinacji pasm podczas orbit wznoszącej i opadającej. Z powodu tej różnorodności zwykle przed rozpoczęciem przetwarzania trzeba odfiltrować dane do jednorodnej podgrupy. Ten proces jest opisany w sekcji Metadane i filtrowanie.
Aby utworzyć jednorodny podzbiór danych Sentinel-1, zazwyczaj trzeba przefiltrować zbiór za pomocą właściwości metadanych. Typowe pola metadanych używane do filtrowania to:
transmitterReceiverPolarisation
: ['VV'], ['HH'], ['VV', 'VH'] lub ['HH', 'HV']
instrumentMode
: „IW” (interferometrie szerokiego pasma), „EW” (bardzo szerokiego pasma) lub „SM” (mapa pasma). Więcej informacji znajdziesz w tym dokumencie.
orbitProperties_pass
: „ASCENDING” (rosnąco) lub „DESCENDING” (malejąco).
resolution_meters
: 10, 25 lub 40
resolution
: „M” (średnia) lub „H” (wysoka). Więcej informacji znajdziesz w tym dokumencie.
Podany niżej kod filtruje zbiór Sentinel-1 według właściwości transmitterReceiverPolarisation
, instrumentMode
i orbitProperties_pass
, a następnie oblicza kompozycje dla kilku kombinacji obserwacji wyświetlanych na mapie, aby pokazać, jak te cechy wpływają na dane.
Edytor kodu (JavaScript)
// Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.
var sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD')
.filterDate('2020-06-01', '2020-10-01');
// Filter the Sentinel-1 collection by metadata properties.
var vvVhIw = sentinel1
// Filter to get images with VV and VH dual polarization.
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))
// Filter to get images collected in interferometric wide swath mode.
.filter(ee.Filter.eq('instrumentMode', 'IW'));
// Separate ascending and descending orbit images into distinct collections.
var vvVhIwAsc = vvVhIw.filter(
ee.Filter.eq('orbitProperties_pass', 'ASCENDING'));
var vvVhIwDesc = vvVhIw.filter(
ee.Filter.eq('orbitProperties_pass', 'DESCENDING'));
// Calculate temporal means for various observations to use for visualization.
// Mean VH ascending.
var vhIwAscMean = vvVhIwAsc.select('VH').mean();
// Mean VH descending.
var vhIwDescMean = vvVhIwDesc.select('VH').mean();
// Mean VV for combined ascending and descending image collections.
var vvIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VV').mean();
// Mean VH for combined ascending and descending image collections.
var vhIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VH').mean();
// Display the temporal means for various observations, compare them.
Map.addLayer(vvIwAscDescMean, {min: -12, max: -4}, 'vvIwAscDescMean');
Map.addLayer(vhIwAscDescMean, {min: -18, max: -10}, 'vhIwAscDescMean');
Map.addLayer(vhIwAscMean, {min: -18, max: -10}, 'vhIwAscMean');
Map.addLayer(vhIwDescMean, {min: -18, max: -10}, 'vhIwDescMean');
Map.setCenter(-73.8719, 4.512, 9); // Bogota, Colombia
Konfiguracja Pythona
Informacje o interfejsie Python API i o używaniu pakietu geemap
do programowania interaktywnego znajdziesz na stronie
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
# Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.
sentinel_1 = ee.ImageCollection('COPERNICUS/S1_GRD').filterDate(
'2020-06-01', '2020-10-01'
)
# Filter the Sentinel-1 collection by metadata properties.
vv_vh_iw = (
sentinel_1.filter(
# Filter to get images with VV and VH dual polarization.
ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')
)
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))
.filter(
# Filter to get images collected in interferometric wide swath mode.
ee.Filter.eq('instrumentMode', 'IW')
)
)
# Separate ascending and descending orbit images into distinct collections.
vv_vh_iw_asc = vv_vh_iw.filter(
ee.Filter.eq('orbitProperties_pass', 'ASCENDING')
)
vv_vh_iw_desc = vv_vh_iw.filter(
ee.Filter.eq('orbitProperties_pass', 'DESCENDING')
)
# Calculate temporal means for various observations to use for visualization.
# Mean VH ascending.
vh_iw_asc_mean = vv_vh_iw_asc.select('VH').mean()
# Mean VH descending.
vh_iw_desc_mean = vv_vh_iw_desc.select('VH').mean()
# Mean VV for combined ascending and descending image collections.
vv_iw_asc_desc_mean = vv_vh_iw_asc.merge(vv_vh_iw_desc).select('VV').mean()
# Mean VH for combined ascending and descending image collections.
vh_iw_asc_desc_mean = vv_vh_iw_asc.merge(vv_vh_iw_desc).select('VH').mean()
# Display the temporal means for various observations, compare them.
m = geemap.Map()
m.add_layer(vv_iw_asc_desc_mean, {'min': -12, 'max': -4}, 'vv_iw_asc_desc_mean')
m.add_layer(
vh_iw_asc_desc_mean, {'min': -18, 'max': -10}, 'vh_iw_asc_desc_mean'
)
m.add_layer(vh_iw_asc_mean, {'min': -18, 'max': -10}, 'vh_iw_asc_mean')
m.add_layer(vh_iw_desc_mean, {'min': -18, 'max': -10}, 'vh_iw_desc_mean')
m.set_center(-73.8719, 4.512, 9) # Bogota, Colombia
m
Przetwarzanie wstępne Sentinel-1
Zdjęcia w Earth Engine 'COPERNICUS/S1_GRD'
Sentinel-1
ImageCollection
składają się z ujęć z zakresu naziemnego (GRD) poziomu 1 przetworzonych na współczynnik rozproszonego odbicia (σ°) w decybelach (dB). Współczynnik rozproszonego odbicia odpowiada obszarowi rozproszonego odbicia celu (poprzecznemu przekroju radaru) na jednostkę powierzchni gruntu. Ponieważ może się ona różnić o kilka rzędów wielkości, jest ona przeliczana na dB jako 10*log10σ°. Określa ona, czy rozproszony teren rozprasza padające promieniowanie mikrofalowe w kierunku z dala od czujnika SAR (dB < 0) czy w kierunku czujnika SAR (dB > 0). Zachowanie to zależy od cech fizycznych terenu, głównie geometrii elementów terenu i ich właściwości elektromagnetycznych.
Earth Engine stosuje następujące kroki wstępnej obróbki (zdefiniowane przez Sentinel-1 Toolbox) do wyprowadzenia współczynnika rozproszonego odbicia w poszczególnych pikselach:
- Stosowanie pliku orbit
- Aktualizuje metadane orbity za pomocą zrekonstruowanego pliku orbity (lub dokładnego pliku orbity, jeśli zrekonstruowany plik jest niedostępny).
- GRD – usuwanie szumów na krawędziach
- Usuwa szum o niskiej intensywności i nieprawidłowe dane na krawędziach sceny.
(stan na 12 stycznia 2018 r.)
- Usuwanie szumów termicznych
- Usuwa szum dodawany w subpasmach, aby zmniejszyć nieciągłości między subpasmami w przypadku scen w trybach wielopasmowych.
(tej operacji nie można zastosować do obrazów utworzonych przed lipcem 2015 r.)
- Stosowanie wartości kalibracji radiometrycznej
- Oblicza natężenie rozproszonego promieniowania za pomocą parametrów kalibracji czujnika w metadanych GRD.
- Korekta terenu (ortorectyfikacja)
- Konwertuje dane z geometrii zasięgu naziemnego, która nie uwzględnia terenu, na σ° za pomocą DEM SRTM 30-metrowego lub DEM ASTER w przypadku wysokich szerokości geograficznych (większych niż 60° lub mniejszych niż -60°).
Notatki dotyczące zbioru danych
- Nie stosuje się spłaszczenia terenu radiometrycznego z powodu artefaktów na zboczach górskich.
- Bezwymiarowy współczynnik odbicia wstecznego jest konwertowany na dB w sposób opisany powyżej.
- Dane SLC z Sentinel-1 nie mogą być obecnie przetwarzane, ponieważ Earth Engine nie obsługuje obrazów ze złożonymi wartościami z powodu braku możliwości ich uśredniania podczas tworzenia piramidy bez utraty informacji o fazie.
- Zasoby GRD SM nie są przetwarzane, ponieważ funkcja
computeNoiseScalingFactor()
w operacji usuwania szumu na krawędzi w narzędziu S1 nie obsługuje trybu SM.
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-25 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-25 UTC."],[[["\u003cp\u003eSentinel-1, part of the Copernicus Programme, provides C-band SAR data for various applications.\u003c/p\u003e\n"],["\u003cp\u003ePre-processing of Sentinel-1 data in Earth Engine involves filtering by metadata and applying specific algorithms.\u003c/p\u003e\n"],["\u003cp\u003eMetadata filtering is crucial for creating a homogeneous subset of data based on polarization, instrument mode, and orbit properties.\u003c/p\u003e\n"],["\u003cp\u003eEarth Engine automatically applies preprocessing steps including orbit file application, noise removal, radiometric calibration, and terrain correction to Sentinel-1 GRD data.\u003c/p\u003e\n"],["\u003cp\u003eThe data represents backscatter coefficient (σ°) in decibels (dB) and undergoes several processing steps to derive this value.\u003c/p\u003e\n"]]],["Sentinel-1 data, collected by the European Space Agency, is pre-processed in Earth Engine to obtain calibrated imagery. Key actions include filtering the heterogeneous data using metadata properties like `transmitterReceiverPolarisation`, `instrumentMode`, `orbitProperties_pass`, `resolution_meters`, and `resolution`. This is demonstrated in code examples using JavaScript and Python, calculating temporal means for visualization. Preprocessing steps involve applying orbit files, removing noise, radiometric calibration, and terrain correction to derive the backscatter coefficient in decibels (dB).\n"],null,["# Sentinel-1 Algorithms\n\n[Sentinel-1](https://earth.esa.int/web/sentinel/missions/sentinel-1) is a\nspace mission funded by the European Union and carried out by the European Space Agency\n(ESA) within the Copernicus Programme. Sentinel-1 collects C-band synthetic aperture\nradar (SAR) imagery at a variety of polarizations and resolutions. Since radar data\nrequires several specialized algorithms to obtain calibrated, orthorectified imagery,\nthis document describes pre-processing of Sentinel-1 data in Earth Engine.\n\nSentinel-1 data is collected with several different instrument configurations,\nresolutions, band combinations during both ascending and descending orbits. Because\nof this heterogeneity, it's usually necessary to filter the data down to a\nhomogeneous subset before starting processing. This process is outlined below in the\n[Metadata and Filtering](/earth-engine/guides/sentinel1#metadata-and-filtering) section.\n\nMetadata and Filtering\n----------------------\n\nTo create a homogeneous subset of Sentinel-1 data, it will usually be necessary to\nfilter the collection using metadata properties. The common metadata fields used for\nfiltering include these properties:\n\n1. `transmitterReceiverPolarisation`: \\['VV'\\], \\['HH'\\], \\['VV', 'VH'\\], or \\['HH', 'HV'\\]\n2. `instrumentMode`: 'IW' (Interferometric Wide Swath), 'EW' (Extra Wide Swath) or 'SM' (Strip Map). See [this\n reference](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes) for details.\n3. `orbitProperties_pass`: 'ASCENDING' or 'DESCENDING'\n4. `resolution_meters`: 10, 25 or 40\n5. `resolution`: 'M' (medium) or 'H' (high). See [this\n reference](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-ground-range-detected) for details.\n\nThe following code filters the Sentinel-1 collection by\n`transmitterReceiverPolarisation`, `instrumentMode`, and\n`orbitProperties_pass` properties, then calculates composites for several\nobservation combinations that are displayed in the map to demonstrate how these\ncharacteristics affect the data.\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.\nvar sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD')\n .filterDate('2020-06-01', '2020-10-01');\n\n// Filter the Sentinel-1 collection by metadata properties.\nvar vvVhIw = sentinel1\n // Filter to get images with VV and VH dual polarization.\n .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))\n .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))\n // Filter to get images collected in interferometric wide swath mode.\n .filter(ee.Filter.eq('instrumentMode', 'IW'));\n\n// Separate ascending and descending orbit images into distinct collections.\nvar vvVhIwAsc = vvVhIw.filter(\n ee.Filter.eq('orbitProperties_pass', 'ASCENDING'));\nvar vvVhIwDesc = vvVhIw.filter(\n ee.Filter.eq('orbitProperties_pass', 'DESCENDING'));\n\n// Calculate temporal means for various observations to use for visualization.\n// Mean VH ascending.\nvar vhIwAscMean = vvVhIwAsc.select('VH').mean();\n// Mean VH descending.\nvar vhIwDescMean = vvVhIwDesc.select('VH').mean();\n// Mean VV for combined ascending and descending image collections.\nvar vvIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VV').mean();\n// Mean VH for combined ascending and descending image collections.\nvar vhIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VH').mean();\n\n// Display the temporal means for various observations, compare them.\nMap.addLayer(vvIwAscDescMean, {min: -12, max: -4}, 'vvIwAscDescMean');\nMap.addLayer(vhIwAscDescMean, {min: -18, max: -10}, 'vhIwAscDescMean');\nMap.addLayer(vhIwAscMean, {min: -18, max: -10}, 'vhIwAscMean');\nMap.addLayer(vhIwDescMean, {min: -18, max: -10}, 'vhIwDescMean');\nMap.setCenter(-73.8719, 4.512, 9); // Bogota, Colombia\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.\nsentinel_1 = ee.ImageCollection('COPERNICUS/S1_GRD').filterDate(\n '2020-06-01', '2020-10-01'\n)\n\n# Filter the Sentinel-1 collection by metadata properties.\nvv_vh_iw = (\n sentinel_1.filter(\n # Filter to get images with VV and VH dual polarization.\n ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')\n )\n .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))\n .filter(\n # Filter to get images collected in interferometric wide swath mode.\n ee.Filter.eq('instrumentMode', 'IW')\n )\n)\n\n# Separate ascending and descending orbit images into distinct collections.\nvv_vh_iw_asc = vv_vh_iw.filter(\n ee.Filter.eq('orbitProperties_pass', 'ASCENDING')\n)\nvv_vh_iw_desc = vv_vh_iw.filter(\n ee.Filter.eq('orbitProperties_pass', 'DESCENDING')\n)\n\n# Calculate temporal means for various observations to use for visualization.\n# Mean VH ascending.\nvh_iw_asc_mean = vv_vh_iw_asc.select('VH').mean()\n# Mean VH descending.\nvh_iw_desc_mean = vv_vh_iw_desc.select('VH').mean()\n# Mean VV for combined ascending and descending image collections.\nvv_iw_asc_desc_mean = vv_vh_iw_asc.merge(vv_vh_iw_desc).select('VV').mean()\n# Mean VH for combined ascending and descending image collections.\nvh_iw_asc_desc_mean = vv_vh_iw_asc.merge(vv_vh_iw_desc).select('VH').mean()\n\n# Display the temporal means for various observations, compare them.\nm = geemap.Map()\nm.add_layer(vv_iw_asc_desc_mean, {'min': -12, 'max': -4}, 'vv_iw_asc_desc_mean')\nm.add_layer(\n vh_iw_asc_desc_mean, {'min': -18, 'max': -10}, 'vh_iw_asc_desc_mean'\n)\nm.add_layer(vh_iw_asc_mean, {'min': -18, 'max': -10}, 'vh_iw_asc_mean')\nm.add_layer(vh_iw_desc_mean, {'min': -18, 'max': -10}, 'vh_iw_desc_mean')\nm.set_center(-73.8719, 4.512, 9) # Bogota, Colombia\nm\n```\n\nSentinel-1 Preprocessing\n------------------------\n\nImagery in the Earth Engine `'COPERNICUS/S1_GRD'` Sentinel-1\n`ImageCollection` is consists of Level-1 Ground Range Detected\n(GRD) scenes processed to backscatter coefficient (σ°) in\ndecibels (dB). The backscatter coefficient represents\ntarget backscattering area (radar cross-section) per unit ground area. Because it can\nvary by several orders of magnitude, it is converted to dB as\n10\\*log~10~σ°. It measures whether the radiated terrain scatters\nthe incident microwave radiation preferentially away from the SAR sensor\ndB \\\u003c 0) or towards the SAR sensor dB \\\u003e 0). This scattering behavior depends on the\nphysical characteristics of the terrain, primarily the geometry of the terrain elements\nand their electromagnetic characteristics.\n\nEarth Engine uses the following preprocessing steps (as implemented by the\n[Sentinel-1 Toolbox](https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1))\nto derive the backscatter coefficient in each pixel:\n\n1. **Apply orbit file**\n - Updates orbit metadata with a restituted [orbit file](https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/pod/products-requirements) (or a precise orbit file if the restituted one is not available).\n2. **GRD border noise removal**\n - Removes low intensity noise and invalid data on scene edges. (As of January 12, 2018)\n3. **Thermal noise removal**\n - Removes additive noise in sub-swaths to help reduce discontinuities between sub-swaths for scenes in multi-swath acquisition modes. (This operation cannot be applied to images produced before July 2015)\n4. **Application of radiometric calibration values**\n - Computes backscatter intensity using sensor calibration parameters in the GRD metadata.\n5. **Terrain correction** (orthorectification)\n - Converts data from ground range geometry, which does not take terrain into account, to σ° using the [SRTM 30 meter DEM](/earth-engine/datasets/catalog/USGS_SRTMGL1_003) or the [ASTER DEM](https://asterweb.jpl.nasa.gov/gdem.asp) for high latitudes (greater than 60° or less than -60°).\n\nDataset Notes\n-------------\n\n- Radiometric Terrain Flattening is not being applied due to artifacts on mountain slopes.\n- The unitless backscatter coefficient is converted to dB as described above.\n- Sentinel-1 SLC data cannot currently be ingested, as Earth Engine does not support images with complex values due to inability to average them during pyramiding without losing phase information.\n- GRD SM assets are not ingested because the `computeNoiseScalingFactor()` function in the [border noise removal operation in the S1 toolbox](https://github.com/senbox-org/s1tbx/blob/master/s1tbx-op-calibration/src/main/java/org/esa/s1tbx/calibration/gpf/RemoveGRDBorderNoiseOp.java) does not support the SM mode."]]