Anúncio: todos os projetos não comerciais registrados para usar o Earth Engine antes de
15 de abril de 2025 precisam
verificar a qualificação não comercial para manter o acesso ao Earth Engine.
Algoritmos do Sentinel-1
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
A Sentinel-1 é uma missão espacial financiada pela União Europeia e realizada pela Agência Espacial Europeia (ESA, na sigla em inglês) no âmbito do programa Copernicus. O Sentinel-1 coleta imagens de radar de abertura sintética (SAR, na sigla em inglês) de banda C com várias polarizações e resoluções. Como os dados de radar exigem vários algoritmos especializados para obter imagens ortorretificadas e calibradas, este documento descreve o pré-processamento dos dados do Sentinel-1 no Earth Engine.
Os dados do Sentinel-1 são coletados com várias configurações de instrumentos,
resoluções e combinações de bandas diferentes durante as órbitas ascendentes e descendentes. Devido
a essa heterogeneidade, geralmente é necessário filtrar os dados para um
subconjunto homogêneo antes de iniciar o processamento. Esse processo é descrito abaixo na seção
Metadados e filtragem.
Para criar um subconjunto homogêneo de dados do Sentinel-1, geralmente é necessário filtrar a coleção usando propriedades de metadados. Os campos de metadados comuns usados para
filtragem incluem estas propriedades:
transmitterReceiverPolarisation
: ['VV'], ['HH'], ['VV', 'VH'] ou
['HH', 'HV']
instrumentMode
: "IW" (faixa larga interferométrica), "EW"
(faixa extra larga) ou "SM" (mapa de faixa). Consulte
esta
referência para mais detalhes.
orbitProperties_pass
: "ASCENDING" ou "DESCENDING"
resolution_meters
: 10, 25 ou 40
resolution
: "M" (médio) ou "H" (alto). Consulte
esta
referência para mais detalhes.
O código a seguir filtra a coleção Sentinel-1 por propriedades transmitterReceiverPolarisation
, instrumentMode
e orbitProperties_pass
e calcula composições para várias combinações de observações que são exibidas no mapa para demonstrar como essas características afetam os dados.
Editor de código (JavaScript)
// Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.
var sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD')
.filterDate('2020-06-01', '2020-10-01');
// Filter the Sentinel-1 collection by metadata properties.
var vvVhIw = sentinel1
// Filter to get images with VV and VH dual polarization.
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))
// Filter to get images collected in interferometric wide swath mode.
.filter(ee.Filter.eq('instrumentMode', 'IW'));
// Separate ascending and descending orbit images into distinct collections.
var vvVhIwAsc = vvVhIw.filter(
ee.Filter.eq('orbitProperties_pass', 'ASCENDING'));
var vvVhIwDesc = vvVhIw.filter(
ee.Filter.eq('orbitProperties_pass', 'DESCENDING'));
// Calculate temporal means for various observations to use for visualization.
// Mean VH ascending.
var vhIwAscMean = vvVhIwAsc.select('VH').mean();
// Mean VH descending.
var vhIwDescMean = vvVhIwDesc.select('VH').mean();
// Mean VV for combined ascending and descending image collections.
var vvIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VV').mean();
// Mean VH for combined ascending and descending image collections.
var vhIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VH').mean();
// Display the temporal means for various observations, compare them.
Map.addLayer(vvIwAscDescMean, {min: -12, max: -4}, 'vvIwAscDescMean');
Map.addLayer(vhIwAscDescMean, {min: -18, max: -10}, 'vhIwAscDescMean');
Map.addLayer(vhIwAscMean, {min: -18, max: -10}, 'vhIwAscMean');
Map.addLayer(vhIwDescMean, {min: -18, max: -10}, 'vhIwDescMean');
Map.setCenter(-73.8719, 4.512, 9); // Bogota, Colombia
Configuração do Python
Consulte a página
Ambiente Python para informações sobre a API Python e o uso de
geemap
para desenvolvimento interativo.
import ee
import geemap.core as geemap
Colab (Python)
# Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.
sentinel_1 = ee.ImageCollection('COPERNICUS/S1_GRD').filterDate(
'2020-06-01', '2020-10-01'
)
# Filter the Sentinel-1 collection by metadata properties.
vv_vh_iw = (
sentinel_1.filter(
# Filter to get images with VV and VH dual polarization.
ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')
)
.filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))
.filter(
# Filter to get images collected in interferometric wide swath mode.
ee.Filter.eq('instrumentMode', 'IW')
)
)
# Separate ascending and descending orbit images into distinct collections.
vv_vh_iw_asc = vv_vh_iw.filter(
ee.Filter.eq('orbitProperties_pass', 'ASCENDING')
)
vv_vh_iw_desc = vv_vh_iw.filter(
ee.Filter.eq('orbitProperties_pass', 'DESCENDING')
)
# Calculate temporal means for various observations to use for visualization.
# Mean VH ascending.
vh_iw_asc_mean = vv_vh_iw_asc.select('VH').mean()
# Mean VH descending.
vh_iw_desc_mean = vv_vh_iw_desc.select('VH').mean()
# Mean VV for combined ascending and descending image collections.
vv_iw_asc_desc_mean = vv_vh_iw_asc.merge(vv_vh_iw_desc).select('VV').mean()
# Mean VH for combined ascending and descending image collections.
vh_iw_asc_desc_mean = vv_vh_iw_asc.merge(vv_vh_iw_desc).select('VH').mean()
# Display the temporal means for various observations, compare them.
m = geemap.Map()
m.add_layer(vv_iw_asc_desc_mean, {'min': -12, 'max': -4}, 'vv_iw_asc_desc_mean')
m.add_layer(
vh_iw_asc_desc_mean, {'min': -18, 'max': -10}, 'vh_iw_asc_desc_mean'
)
m.add_layer(vh_iw_asc_mean, {'min': -18, 'max': -10}, 'vh_iw_asc_mean')
m.add_layer(vh_iw_desc_mean, {'min': -18, 'max': -10}, 'vh_iw_desc_mean')
m.set_center(-73.8719, 4.512, 9) # Bogota, Colombia
m
Pré-processamento do Sentinel-1
As imagens no 'COPERNICUS/S1_GRD'
Sentinel-1 do Earth Engine
ImageCollection
consistem em cenas de nível 1 com detecção de alcance do solo (GRD, na sigla em inglês)
processadas para coeficiente de retroespalhamento (σ°) em
decibéis (dB). O coeficiente de retroespalhamento representa a área de retroespalhamento do alvo (seção transversal do radar) por unidade de área do solo. Como pode variar em várias ordens de magnitude, ele é convertido em dB como 10*log10σ°. Ele mede se o terreno irradiado dispersa a radiação de micro-ondas incidente preferencialmente para longe do sensor de SAR (dB < 0) ou para o sensor de SAR (dB > 0). Esse comportamento de dispersão depende das
características físicas do terreno, principalmente da geometria dos elementos do terreno
e das características eletromagnéticas deles.
O Earth Engine usa as seguintes etapas de pré-processamento (implementadas pela
caixa de ferramentas do Sentinel-1)
para derivar o coeficiente de retroespalhamento em cada pixel:
- Aplicar arquivo de órbita
- Atualiza os metadados da órbita com um arquivo de órbita
restaurado (ou um arquivo de órbita preciso, se o restaurado não estiver
disponível).
- Remoção de ruído de bordas de GRD
- Remove ruídos de baixa intensidade e dados inválidos nas bordas da cena.
(Em 12 de janeiro de 2018)
- Remoção de ruído térmico
- Remove ruídos aditivos em subfaixas para ajudar a reduzir descontinuidades
entre subfaixas para cenas em modos de aquisição de várias subfaixas.
(Esta operação não pode ser aplicada a imagens produzidas antes de julho de 2015)
- Aplicação de valores de calibração radiométrica
- Calcula a intensidade de retroespalhamento usando parâmetros de calibração do sensor nos metadados do GRD.
- Correção de terreno (ortorretificação)
- Converte dados da geometria de alcance do solo, que não considera o terreno, em σ° usando o SRTM 30 meter DEM ou o ASTER DEM para latitudes altas (maiores que 60° ou menores que -60°).
Notas do conjunto de dados
- A nivelação radiométrica do terreno não está sendo aplicada devido a artefatos nas encostas das montanhas.
- O coeficiente de retroespalhamento sem unidade é convertido em dB,
conforme descrito acima.
- No momento, não é possível ingerir dados do Sentinel-1 SLC, porque o Earth Engine não aceita imagens com valores complexos devido à incapacidade de fazer a média delas durante a pirâmide sem perder informações de fase.
- Os recursos de SM de GRD não são ingeridos porque a função
computeNoiseScalingFactor()
na operação de remoção de ruído de borda na caixa de ferramentas do S1 não oferece suporte ao modo SM.
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-07-25 UTC.
[null,null,["Última atualização 2025-07-25 UTC."],[[["\u003cp\u003eSentinel-1, part of the Copernicus Programme, provides C-band SAR data for various applications.\u003c/p\u003e\n"],["\u003cp\u003ePre-processing of Sentinel-1 data in Earth Engine involves filtering by metadata and applying specific algorithms.\u003c/p\u003e\n"],["\u003cp\u003eMetadata filtering is crucial for creating a homogeneous subset of data based on polarization, instrument mode, and orbit properties.\u003c/p\u003e\n"],["\u003cp\u003eEarth Engine automatically applies preprocessing steps including orbit file application, noise removal, radiometric calibration, and terrain correction to Sentinel-1 GRD data.\u003c/p\u003e\n"],["\u003cp\u003eThe data represents backscatter coefficient (σ°) in decibels (dB) and undergoes several processing steps to derive this value.\u003c/p\u003e\n"]]],["Sentinel-1 data, collected by the European Space Agency, is pre-processed in Earth Engine to obtain calibrated imagery. Key actions include filtering the heterogeneous data using metadata properties like `transmitterReceiverPolarisation`, `instrumentMode`, `orbitProperties_pass`, `resolution_meters`, and `resolution`. This is demonstrated in code examples using JavaScript and Python, calculating temporal means for visualization. Preprocessing steps involve applying orbit files, removing noise, radiometric calibration, and terrain correction to derive the backscatter coefficient in decibels (dB).\n"],null,["# Sentinel-1 Algorithms\n\n[Sentinel-1](https://earth.esa.int/web/sentinel/missions/sentinel-1) is a\nspace mission funded by the European Union and carried out by the European Space Agency\n(ESA) within the Copernicus Programme. Sentinel-1 collects C-band synthetic aperture\nradar (SAR) imagery at a variety of polarizations and resolutions. Since radar data\nrequires several specialized algorithms to obtain calibrated, orthorectified imagery,\nthis document describes pre-processing of Sentinel-1 data in Earth Engine.\n\nSentinel-1 data is collected with several different instrument configurations,\nresolutions, band combinations during both ascending and descending orbits. Because\nof this heterogeneity, it's usually necessary to filter the data down to a\nhomogeneous subset before starting processing. This process is outlined below in the\n[Metadata and Filtering](/earth-engine/guides/sentinel1#metadata-and-filtering) section.\n\nMetadata and Filtering\n----------------------\n\nTo create a homogeneous subset of Sentinel-1 data, it will usually be necessary to\nfilter the collection using metadata properties. The common metadata fields used for\nfiltering include these properties:\n\n1. `transmitterReceiverPolarisation`: \\['VV'\\], \\['HH'\\], \\['VV', 'VH'\\], or \\['HH', 'HV'\\]\n2. `instrumentMode`: 'IW' (Interferometric Wide Swath), 'EW' (Extra Wide Swath) or 'SM' (Strip Map). See [this\n reference](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes) for details.\n3. `orbitProperties_pass`: 'ASCENDING' or 'DESCENDING'\n4. `resolution_meters`: 10, 25 or 40\n5. `resolution`: 'M' (medium) or 'H' (high). See [this\n reference](https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/resolutions/level-1-ground-range-detected) for details.\n\nThe following code filters the Sentinel-1 collection by\n`transmitterReceiverPolarisation`, `instrumentMode`, and\n`orbitProperties_pass` properties, then calculates composites for several\nobservation combinations that are displayed in the map to demonstrate how these\ncharacteristics affect the data.\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.\nvar sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD')\n .filterDate('2020-06-01', '2020-10-01');\n\n// Filter the Sentinel-1 collection by metadata properties.\nvar vvVhIw = sentinel1\n // Filter to get images with VV and VH dual polarization.\n .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))\n .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))\n // Filter to get images collected in interferometric wide swath mode.\n .filter(ee.Filter.eq('instrumentMode', 'IW'));\n\n// Separate ascending and descending orbit images into distinct collections.\nvar vvVhIwAsc = vvVhIw.filter(\n ee.Filter.eq('orbitProperties_pass', 'ASCENDING'));\nvar vvVhIwDesc = vvVhIw.filter(\n ee.Filter.eq('orbitProperties_pass', 'DESCENDING'));\n\n// Calculate temporal means for various observations to use for visualization.\n// Mean VH ascending.\nvar vhIwAscMean = vvVhIwAsc.select('VH').mean();\n// Mean VH descending.\nvar vhIwDescMean = vvVhIwDesc.select('VH').mean();\n// Mean VV for combined ascending and descending image collections.\nvar vvIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VV').mean();\n// Mean VH for combined ascending and descending image collections.\nvar vhIwAscDescMean = vvVhIwAsc.merge(vvVhIwDesc).select('VH').mean();\n\n// Display the temporal means for various observations, compare them.\nMap.addLayer(vvIwAscDescMean, {min: -12, max: -4}, 'vvIwAscDescMean');\nMap.addLayer(vhIwAscDescMean, {min: -18, max: -10}, 'vhIwAscDescMean');\nMap.addLayer(vhIwAscMean, {min: -18, max: -10}, 'vhIwAscMean');\nMap.addLayer(vhIwDescMean, {min: -18, max: -10}, 'vhIwDescMean');\nMap.setCenter(-73.8719, 4.512, 9); // Bogota, Colombia\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load the Sentinel-1 ImageCollection, filter to Jun-Sep 2020 observations.\nsentinel_1 = ee.ImageCollection('COPERNICUS/S1_GRD').filterDate(\n '2020-06-01', '2020-10-01'\n)\n\n# Filter the Sentinel-1 collection by metadata properties.\nvv_vh_iw = (\n sentinel_1.filter(\n # Filter to get images with VV and VH dual polarization.\n ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')\n )\n .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH'))\n .filter(\n # Filter to get images collected in interferometric wide swath mode.\n ee.Filter.eq('instrumentMode', 'IW')\n )\n)\n\n# Separate ascending and descending orbit images into distinct collections.\nvv_vh_iw_asc = vv_vh_iw.filter(\n ee.Filter.eq('orbitProperties_pass', 'ASCENDING')\n)\nvv_vh_iw_desc = vv_vh_iw.filter(\n ee.Filter.eq('orbitProperties_pass', 'DESCENDING')\n)\n\n# Calculate temporal means for various observations to use for visualization.\n# Mean VH ascending.\nvh_iw_asc_mean = vv_vh_iw_asc.select('VH').mean()\n# Mean VH descending.\nvh_iw_desc_mean = vv_vh_iw_desc.select('VH').mean()\n# Mean VV for combined ascending and descending image collections.\nvv_iw_asc_desc_mean = vv_vh_iw_asc.merge(vv_vh_iw_desc).select('VV').mean()\n# Mean VH for combined ascending and descending image collections.\nvh_iw_asc_desc_mean = vv_vh_iw_asc.merge(vv_vh_iw_desc).select('VH').mean()\n\n# Display the temporal means for various observations, compare them.\nm = geemap.Map()\nm.add_layer(vv_iw_asc_desc_mean, {'min': -12, 'max': -4}, 'vv_iw_asc_desc_mean')\nm.add_layer(\n vh_iw_asc_desc_mean, {'min': -18, 'max': -10}, 'vh_iw_asc_desc_mean'\n)\nm.add_layer(vh_iw_asc_mean, {'min': -18, 'max': -10}, 'vh_iw_asc_mean')\nm.add_layer(vh_iw_desc_mean, {'min': -18, 'max': -10}, 'vh_iw_desc_mean')\nm.set_center(-73.8719, 4.512, 9) # Bogota, Colombia\nm\n```\n\nSentinel-1 Preprocessing\n------------------------\n\nImagery in the Earth Engine `'COPERNICUS/S1_GRD'` Sentinel-1\n`ImageCollection` is consists of Level-1 Ground Range Detected\n(GRD) scenes processed to backscatter coefficient (σ°) in\ndecibels (dB). The backscatter coefficient represents\ntarget backscattering area (radar cross-section) per unit ground area. Because it can\nvary by several orders of magnitude, it is converted to dB as\n10\\*log~10~σ°. It measures whether the radiated terrain scatters\nthe incident microwave radiation preferentially away from the SAR sensor\ndB \\\u003c 0) or towards the SAR sensor dB \\\u003e 0). This scattering behavior depends on the\nphysical characteristics of the terrain, primarily the geometry of the terrain elements\nand their electromagnetic characteristics.\n\nEarth Engine uses the following preprocessing steps (as implemented by the\n[Sentinel-1 Toolbox](https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1))\nto derive the backscatter coefficient in each pixel:\n\n1. **Apply orbit file**\n - Updates orbit metadata with a restituted [orbit file](https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/pod/products-requirements) (or a precise orbit file if the restituted one is not available).\n2. **GRD border noise removal**\n - Removes low intensity noise and invalid data on scene edges. (As of January 12, 2018)\n3. **Thermal noise removal**\n - Removes additive noise in sub-swaths to help reduce discontinuities between sub-swaths for scenes in multi-swath acquisition modes. (This operation cannot be applied to images produced before July 2015)\n4. **Application of radiometric calibration values**\n - Computes backscatter intensity using sensor calibration parameters in the GRD metadata.\n5. **Terrain correction** (orthorectification)\n - Converts data from ground range geometry, which does not take terrain into account, to σ° using the [SRTM 30 meter DEM](/earth-engine/datasets/catalog/USGS_SRTMGL1_003) or the [ASTER DEM](https://asterweb.jpl.nasa.gov/gdem.asp) for high latitudes (greater than 60° or less than -60°).\n\nDataset Notes\n-------------\n\n- Radiometric Terrain Flattening is not being applied due to artifacts on mountain slopes.\n- The unitless backscatter coefficient is converted to dB as described above.\n- Sentinel-1 SLC data cannot currently be ingested, as Earth Engine does not support images with complex values due to inability to average them during pyramiding without losing phase information.\n- GRD SM assets are not ingested because the `computeNoiseScalingFactor()` function in the [border noise removal operation in the S1 toolbox](https://github.com/senbox-org/s1tbx/blob/master/s1tbx-op-calibration/src/main/java/org/esa/s1tbx/calibration/gpf/RemoveGRDBorderNoiseOp.java) does not support the SM mode."]]