ee.Kernel.chebyshev
Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
Tạo một hạt nhân khoảng cách dựa trên khoảng cách Chebyshev (khoảng cách lớn nhất dọc theo bất kỳ phương diện nào).
Cách sử dụng | Giá trị trả về |
---|
ee.Kernel.chebyshev(radius, units, normalize, magnitude) | Kernel |
Đối số | Loại | Thông tin chi tiết |
---|
radius | Số thực dấu phẩy động | Bán kính của hạt nhân cần tạo. |
units | Chuỗi, mặc định: "pixels" | Hệ thống đo lường cho nhân ("pixel" hoặc "mét"). Nếu hạt nhân được chỉ định bằng mét, thì hạt nhân sẽ đổi kích thước khi mức thu phóng thay đổi. |
normalize | Boolean, mặc định: false | Chuẩn hoá các giá trị của nhân để có tổng bằng 1. |
magnitude | Số thực, mặc định: 1 | Điều chỉnh tỷ lệ mỗi giá trị theo số tiền này. |
Ví dụ
Trình soạn thảo mã (JavaScript)
print('A Chebyshev distance kernel', ee.Kernel.chebyshev({radius: 3}));
/**
* Output weights matrix
*
* [3, 3, 3, 3, 3, 3, 3]
* [3, 2, 2, 2, 2, 2, 3]
* [3, 2, 1, 1, 1, 2, 3]
* [3, 2, 1, 0, 1, 2, 3]
* [3, 2, 1, 1, 1, 2, 3]
* [3, 2, 2, 2, 2, 2, 3]
* [3, 3, 3, 3, 3, 3, 3]
*/
Thiết lập Python
Hãy xem trang
Môi trường Python để biết thông tin về API Python và cách sử dụng geemap
cho quá trình phát triển tương tác.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
print('A Chebyshev distance kernel:')
pprint(ee.Kernel.chebyshev(**{'radius': 3}).getInfo())
# Output weights matrix
# [3, 3, 3, 3, 3, 3, 3]
# [3, 2, 2, 2, 2, 2, 3]
# [3, 2, 1, 1, 1, 2, 3]
# [3, 2, 1, 0, 1, 2, 3]
# [3, 2, 1, 1, 1, 2, 3]
# [3, 2, 2, 2, 2, 2, 3]
# [3, 3, 3, 3, 3, 3, 3]
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-26 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-26 UTC."],[[["\u003cp\u003eGenerates a distance kernel based on the Chebyshev distance, which calculates the greatest distance along any dimension between two pixels.\u003c/p\u003e\n"],["\u003cp\u003eThe kernel can be customized using parameters such as radius, units (pixels or meters), normalization, and magnitude scaling.\u003c/p\u003e\n"],["\u003cp\u003eWhen applied, the kernel assigns weights to neighboring pixels based on their Chebyshev distance from the central pixel, creating a matrix of weights.\u003c/p\u003e\n"],["\u003cp\u003eThe resulting weights matrix can be used in various image processing operations, such as smoothing or neighborhood analysis.\u003c/p\u003e\n"]]],["A Chebyshev distance kernel is generated using `ee.Kernel.chebyshev()` with a specified `radius`. The measurement system can be set to 'pixels' or 'meters' via the `units` argument. The kernel values can be normalized to sum to 1 using `normalize`, and scaled with `magnitude`. The output is a kernel representing the Chebyshev distance, where the greatest distance along any dimension defines the value, and it is presented as a matrix.\n"],null,["# ee.Kernel.chebyshev\n\nGenerates a distance kernel based on Chebyshev distance (greatest distance along any dimension).\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|--------------------------------------------------------------------------|---------|\n| `ee.Kernel.chebyshev(radius, `*units* `, `*normalize* `, `*magnitude*`)` | Kernel |\n\n| Argument | Type | Details |\n|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `radius` | Float | The radius of the kernel to generate. |\n| `units` | String, default: \"pixels\" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |\n| `normalize` | Boolean, default: false | Normalize the kernel values to sum to 1. |\n| `magnitude` | Float, default: 1 | Scale each value by this amount. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\nprint('A Chebyshev distance kernel', ee.Kernel.chebyshev({radius: 3}));\n\n/**\n * Output weights matrix\n *\n * [3, 3, 3, 3, 3, 3, 3]\n * [3, 2, 2, 2, 2, 2, 3]\n * [3, 2, 1, 1, 1, 2, 3]\n * [3, 2, 1, 0, 1, 2, 3]\n * [3, 2, 1, 1, 1, 2, 3]\n * [3, 2, 2, 2, 2, 2, 3]\n * [3, 3, 3, 3, 3, 3, 3]\n */\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\nprint('A Chebyshev distance kernel:')\npprint(ee.Kernel.chebyshev(**{'radius': 3}).getInfo())\n\n# Output weights matrix\n# [3, 3, 3, 3, 3, 3, 3]\n# [3, 2, 2, 2, 2, 2, 3]\n# [3, 2, 1, 1, 1, 2, 3]\n# [3, 2, 1, 0, 1, 2, 3]\n# [3, 2, 1, 1, 1, 2, 3]\n# [3, 2, 2, 2, 2, 2, 3]\n# [3, 3, 3, 3, 3, 3, 3]\n```"]]