お知らせ:
2025 年 4 月 15 日より前に Earth Engine の使用を登録したすべての非商用プロジェクトは、Earth Engine へのアクセスを維持するために
非商用目的での利用資格を確認する必要があります。
ee.Kernel.manhattan
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
直線距離(マンハッタン距離)に基づいて距離カーネルを生成します。
用途 | 戻り値 |
---|
ee.Kernel.manhattan(radius, units, normalize, magnitude) | カーネル |
引数 | タイプ | 詳細 |
---|
radius | 浮動小数点数 | 生成するカーネルの半径。 |
units | 文字列、デフォルト: 「pixels」 | カーネルの測定システム(「ピクセル」または「メートル」)。カーネルがメートル単位で指定されている場合、ズームレベルが変更されるとサイズが変更されます。 |
normalize | ブール値。デフォルト値は false です。 | カーネル値を正規化して、合計が 1 になるようにします。 |
magnitude | 浮動小数点数、デフォルト: 1 | 各値をこの量でスケーリングします。 |
例
コードエディタ(JavaScript)
print('A Manhattan kernel', ee.Kernel.manhattan({radius: 3}));
/**
* Output weights matrix
*
* [6, 5, 4, 3, 4, 5, 6]
* [5, 4, 3, 2, 3, 4, 5]
* [4, 3, 2, 1, 2, 3, 4]
* [3, 2, 1, 0, 1, 2, 3]
* [4, 3, 2, 1, 2, 3, 4]
* [5, 4, 3, 2, 3, 4, 5]
* [6, 5, 4, 3, 4, 5, 6]
*/
Python の設定
Python API とインタラクティブな開発での geemap
の使用については、
Python 環境のページをご覧ください。
import ee
import geemap.core as geemap
Colab(Python)
from pprint import pprint
print('A Manhattan kernel:')
pprint(ee.Kernel.manhattan(**{'radius': 3}).getInfo())
# Output weights matrix
# [6, 5, 4, 3, 4, 5, 6]
# [5, 4, 3, 2, 3, 4, 5]
# [4, 3, 2, 1, 2, 3, 4]
# [3, 2, 1, 0, 1, 2, 3]
# [4, 3, 2, 1, 2, 3, 4]
# [5, 4, 3, 2, 3, 4, 5]
# [6, 5, 4, 3, 4, 5, 6]
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
[null,null,["最終更新日 2025-07-26 UTC。"],[],["This tool generates a rectilinear (city-block) distance kernel using `ee.Kernel.manhattan`. Key actions involve setting the `radius`, specifying `units` as pixels or meters, and optionally `normalize` the kernel to sum to 1, and `magnitude` to scale each value. The kernel's output is a matrix, where each cell's value represents its distance.\n"],null,[]]